为了考察水分吸着与解吸过程中木材与吸着水之间的相互作用,本

上传人:dream****gning 文档编号:73402353 上传时间:2022-04-11 格式:DOC 页数:9 大小:56KB
返回 下载 相关 举报
为了考察水分吸着与解吸过程中木材与吸着水之间的相互作用,本_第1页
第1页 / 共9页
为了考察水分吸着与解吸过程中木材与吸着水之间的相互作用,本_第2页
第2页 / 共9页
为了考察水分吸着与解吸过程中木材与吸着水之间的相互作用,本_第3页
第3页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
吸着解吸过程中水分与木材之间的相互作用从介电弛豫及吸附热力学(作者:曹金珍 导师:赵广杰 )摘要 为了考察吸着与解吸过程中水分与木材之间的相互作用机理,本论文分别从介电弛豫和吸附热力学两个领域对木材中的水分进行了研究。其中在介电弛豫研究中,通过对水分吸着过程(绝干状态20,40,60,80,90,100%RH平衡态)及解吸过程(25,100%RH80%RH60%RH20%RH)中西藏云杉(Picea spinulosa Griff.)试材的介电常数和介电损耗因子的测定,得到了吸着及解吸过程中水分介电弛豫的变化信息。应用Cole-Cole圆弧则对试材的介电性质进行分析后,可以进一步得到水分吸着或解吸过程中木材的静介电常数s,光介电常数,弛豫强度(s-)及衡量弛豫时间分布宽窄的系数(或)的变化。以绝干状态20,60%RH平衡态的吸湿过程为例,将基于吸着水分子回转取向运动的介电弛豫与基于木材无定形区中伯醇羟基回转取向运动的介电弛豫进行分离,并在Eyring的绝对速度反应论的基础上,求得了与吸着水分子进行回转取向运动相关连的热力学量,得到了在吸着过程中吸着水分子与木材吸着点之间的氢键结合随着水分吸着进程的变化情况。在水分平衡状态下所构筑的介电弛豫过程中吸着水分子的回转取向模型基础上,本研究中发展了水分吸着过程中水分子进行回转取向运动的分子模型。在吸附热力学研究中,由于到目前为止Clausius-Clapeyron 公式的应用只局限于水分平衡状态,因此本研究中首先考察了Clausius-Clapeyron 公式对于非平衡状态下水分-木材系统的适用性。通过实验测定了25,50,75三个温度下西藏云杉试材在水分吸着过程(绝干状态到某一恒温恒湿平衡态)及水分解吸过程(从纤维饱和点到某一恒温恒湿平衡态)的各个阶段的水分吸着与解吸等温线。应用基于Clausius-Clapeyron公式的热力学公式以及由水分吸着与解吸等温线中得到的数据,得到了木材中吸着水在各个吸着或解吸阶段的微分吸着热QL,自由能变化G和微分吸着熵S(用TS进行比较)等热力学量。QL基本上对应着水分子与木材实质之间的结合能,QL高的值通常表示水分子与木材实质间有很强的氢键结合作用;G与润胀木材构造暴露木材吸着点所做的功有关;TS值则可以提供有关吸着在木材上的水分子的排列规则性方面的信息。因此,本研究通过考察在水分吸着与解吸过程中这些热力学量的变化规律,得到了有关水分吸着和解吸过程中吸着水分子与木材实质之间相互作用变化的信息。本研究结果归纳如下:1. 在本研究测定的温度和频率范围内 (-5020, 31.6Hz1MHz), 木材在水分吸着与解吸过程中出现了三个介电弛豫过程。在绝干状态,观察到基于木材细胞壁无定形区中伯醇羟基回转取向运动的介电弛豫过程。当木材中含有吸着水时,在低频域观察到弛豫过程。其机理包括两个部分,其一是由吸着水在木材内部的分布不均匀而引起的界面极化,其二是由吸着水中杂质离子的存在而引起的直流电导。在不同的吸着与解吸阶段弛豫过程对应着不同的机理。另外,在高频域出现的弛豫过程是由基于吸着水回转取向运动的介电弛豫过程和弛豫过程两者叠加而成的。2. 在低湿度域的吸湿过程中,弛豫过程在吸湿初期有一个很大的增量,随着吸湿过程的进行逐渐降低;与此对应,在低湿度域的解吸过程中,弛豫过程没有出现单调递减,而是在解吸中期出现了增加的变化趋势。这些现象都与吸着水在木材内的分布不均匀有关,因此在低湿度域,界面极化占主导作用。在高湿度域,弛豫过程随着吸湿(或解吸)的进行始终呈单调递增(或递减)的趋势,这时直流电导是引起弛豫过程的主要原因。在水分吸着(或解吸)过程中,弛豫过程随着吸着(或解吸)的进行逐渐增大(或减小)。3. 在所测定的温度和频率范围内木材的介电性质可以用两组Cole-Cole圆弧则来描述。低频侧的实验值可以用Cole-Cole圆弧则(1)描述,而高频侧的实验值可以用Cole-Cole圆弧则(2)描述。Cole-Cole圆弧则(1)对应着弛豫过程,而Cole-Cole圆弧则(2)对应着弛豫过程。在较低温度条件下,Cole-Cole圆弧则(2)非常明显。随着温度的升高,Cole-Cole圆弧则(1)越来越占优势。因此,采用20的Cole-Cole圆弧则(1)以及-50的Cole-Cole圆弧则(2)来描述吸着与解吸过程中介电参数的变化。4. 由Cole-Cole圆弧则(1)得到的弛豫强度(s-) 与进行离子导电性的水分子的数量有关,而由Cole-Cole圆弧则(2)得到的弛豫强度(s-) 则代表木材中可能进行回转取向运动的伯醇羟基和吸着水分子的总数。在水分吸着及解吸过程中,分别由20的Cole-Cole圆弧则(1)和-50的Cole-Cole圆弧则(2)得到的两组弛豫强度表现出相似的变化趋势:在水分吸着过程中,弛豫强度在低湿度域的变化不大,在高湿度域弛豫强度随着吸湿进行而增强;在水分解吸过程中也可以观察到相似的趋势,即,在低湿度域的变化不大,在高湿度域弛豫强度随着解吸进行明显下降。5. 从绝干状态20,60%RH平衡态的水分吸着过程中,吸着水分子在回转取向过程中的活化焓随着吸湿时间呈线性增加,这说明一个吸着水分子与周围木材吸着点之间的氢键结合数的平均值随着吸湿过程的进行逐渐增多,直至达到平衡状态。6. 水分吸着与解吸过程中的木材-水分系统可以划分为两个区域(V=V1+V2),其中一个区域中的水分子与目标相对湿度达到平衡状态(V1),而另一区域中水分子仍保持原来的初始平衡状态(V2)。因此,木材中水分的热力学量也可以表达为:F(m)= F1(m,t)+F2(m)。在局部平衡假设的基础上,V1区域中水分子的热力学性质,即F1(m,t),也可以根据平衡态热力学进行定义。由于本研究中所采用的吸着过程(初始状态:绝干状态)中V2区域中不存在水分子,而解吸过程(初始状态:纤维饱和点)中V2区域的水分子的热力学量都与液态水基本相似,所以微分热力学量可以近似为零。因此,Clausius-Clapeyron公式可以应用于水分吸着与解吸过程中的木材-水分非平衡系统,尤其是本研究所采用的水分吸着与解吸过程。7. 从由Clausius-Clapeyron公式计算得到的热力学量与含水率的关系曲线可以看出,在水分吸着过程中, QL和TS都随着吸湿的进行逐渐增大。在吸湿初期,QL和TS都出现了负值。这说明在吸湿初期,水分与木材之间的结合能很弱,低于液态水分子之间的相互结合能,并且木材中水分子的排列也比液态水分子无规则。而随着吸着过程的进行,水分与木材之间的结合作用逐渐加强,水分子的排列也趋于规则。G在水分吸着过程的变化不大。8. 如果将QL与含水率的关系转化成QL与相对湿度的关系,还可以发现,QL的最小值出现在相对湿度为60%左右(20),这进一步证实了60%的相对湿度可能对应着多分子层吸着水的产生。9. 在水分解吸过程的任意阶段,在V1区域(即与目标湿度达到平衡的那部分水分所占的木材区域)中的水分子的QL,G和TS随着含水率的增大基本呈下降趋势,除了在812%的含水率区域QL和TS值出现了轻微的增大。在某一温湿度条件的解吸过程中,Q和TS都随着解吸时间下降,而G基本保持不变。10. 木材的吸着滞后包括水分吸着滞后和热力学吸着滞后两个方面。在较低温度条件下,水分吸着滞后表现明显,而在较高温度条件下,吸着滞后主要表现为热力学吸着滞后。有效羟基说可以同时解释水分吸着滞后现象和热力学吸着滞后现象。关键词: 木材,吸着水,吸着过程,解吸过程,介电弛豫,吸附热力学Interaction between Water and Woodduring Adsorption and Desorption Processes from Dielectric and Thermodynamic Approaches(Cao Jinzhen Directed by prof. Zhao Guangjie)Abstract In order to investigate the interaction between adsorbed water and wood during moisture adsorption and desorption processes, the dielectric approach and thermodynamic approach are respectively applied in this study.In the research by dielectric approach, the dielectric constant and dielectric loss factor of Sikkim spruce (Picea spinulosa Griff.) specimens were measured during various moisture adsorption processes (from oven-dry state to the equilibrium state in 20,40,80,90,100%RH environments, respectively) and desorption processes (25,100%RH80%RH60%RH20%RH). Thus, the change of dielectric relaxation during moisture adsorption and desorption processes can be clarified. After analyzing the dielectric properties of wood by use of Cole-Cole plots, the static dielectric constant s, optic dielectric constant , relaxation strength (s-), and the coefficient (or ) describing the distribution of relaxation times during adsorption and desorption processes could be obtained. Moreover, taking the adsorption process from oven-dry state to the equilibrium state in 20,60%RH environment as an example, the dielectric relaxation based on the reorientation of adsorbed water molecules was separated out from that based on the methylol groups in the amorphous region of wood cell wall. Further the thermodynamic quantities of adsorbed water were calculated based on Eyrings absolute rate reaction theory. As a result, the change of hydrogen bonding between adsorbed water molecules and wood adsorption sites during adsorption process was obtained. On the basis of the constructed reorientation model of water molecules during dielectric relaxation in previous research, the authors also developed a molecular model to illustrate the reorientation behavior of water molecules during dielectric relaxation in the adsorption process from oven-dry state to 20, 60%RH equilibrium state. In the research by thermodynamic approach, the application of the Clausius-Clapeyron equation to non-equilibrium wood-water system was discussed first because until now its application was still limited in equilibrium region. Then the moisture sorption isotherms of Sikkim spruce were determined at different stages of various adsorption processes (initiated from oven-dry state) and desorption processes (initiated from fiber saturation point) for three temperatures of 25, 50, and 75. By use of the Clausius-Clapeyron equation and the data from the sorption isotherms, the differential thermodynamic properties including differential sorption heat QL, free energy change G and differential entropy TS of adsorbed water in wood can be worked out by using the Clausius-Clapeyron equation. QL is essentially corresponding to the binding energy between the water molecules and wood substances. A high QL value suggests that there is strong hydrogen bonding effect between water molecules and wood substances. G is related to the work involved in making sorption sites available by swelling the wood structure. TS value provides some information on the regularity of water molecules adsorbed on wood. Therefore, from the change of these thermodynamic properties during adsorption and desorption processes, some information concerning the interaction between wood and adsorbed water was obtained.The results from both dielectric and thermodynamic approaches were summarized as follows:1 Within the measured temperature and frequency range (-5020, 31.6Hz1MHz), three dielectric relaxation processes could be observed. At oven-dry state, relaxation process appeared, which was based on the reorientation of methylol groups in the amorphous region of wood cell wall. After wood adsorbed water, relaxation process can be observed in lower frequency region. The mechanism of this relaxation process includes two parts, one of which is the interfacial polarization resulted from the inhomogeneous distribution of adsorbed water in wood and the other is the electric conduction caused by the impurity ions in adsorbed water. Different mechanisms work at different stages of adsorption and desorption. In addition, there is dielectric relaxation process in higher frequency region, which is composed by the relaxation process based on the reorientation of adsorbed water molecules and relaxation process .2. During the adsorption process at low humidity level, there is an abrupt increase at the initial stage of adsorption. It decreases with adsorption process. Correspondingly, during the desorption process at low humidity level, dielectric relaxation process does not decrease monotonously with desorption time but appears increasing trend at the medium stage. These phenomena are all concerned with the inhomogeneous distribution of adsorbed water in wood. Therefore, it can be concluded that the interfacial polarization is predominant at low humidity level. While at high humidity level, relaxation process increases (or decreases) monotonously with adsorption (or desorption) process. In this case, the electric conduction is the main cause for dielectric process . The dielectric relaxation process in higher frequency region, increases (or decreases with the developing adsorption (or desorption) during moisture adsorption (or desorption) process.3. The dielectric properties in the measured temperature and frequency region can be described by two groups of Cole-Cole plots. Within the measured temperature and frequency range, the data in lower frequency side are described by Cole-Cole plots (1) and the other group is Cole-Cole (2). At lower temperatures, Cole-Cole plots (2) are obvious. But with increasing temperature, Cole-Cole plots (1) become more and more predominant. Thus, the Cole-Cole plots (1) at 20 and the Cole-Cole plots (2) at 50 are presented to illustrate the change of dielectric parameters during adsorption and desorption processes.4. The relaxation strength (s-) obtained from Cole-Cole plots (1) is associated with the amount of water molecules subjected to electric conduction, while the (s-) obtained from Cole-Cole plots (2) mainly represents the total amount of methylol groups and adsorbed water molecules possible to reorient. The common characteristic of the two groups of (s-) values are as follows. During adsorption process, they have not change much at lower humidity level but increase with adsorption time at higher humidity level. Similar trends can be found during desorption process. Namely, they change little at low humidity level but decrease obviously during the desorption process from high humidity level to low humidity level. 5. During the moisture adsorption process from oven-dry state to the equilibrium state in 20,60%RH environment, the activation enthalpy of adsorbed water during reorientation increases linearly with adsorption time. It suggests that the average number of hydrogen bonds formed between each water molecule and its surrounding adsorption sites increases with adsorption process until the equilibrium state is reached.6. The wood-water system during water sorption process can be divided into two regions (V=V1+V2), in one of which the water molecules reach equilibrium with the target relative humidity (V1), and in the other they remain their original equilibrium state (V2). Thus, the thermodynamic properties of water in wood were expressed as F(m)= F1(m,t)+F2(m). On the basis of the Assumption of Local Equilibrium, the thermodynamic properties in V1 region, that is, F1(m,t), can be defined according to the equilibrium thermodynamics. In this study, the adsorption process initiated from oven-dry state, so there are no water molecules in V2 region; the desorption process initiated from fiber saturation point, at which state the water molecules have similar thermodynamic properties with liquid water and the differential thermodynamic properties are regarded as zero. Therefore, the Clausius-Clapeyron equation was verified to be applicable to the wood-water system at non-equilibrium states during adsorption and desorption processes, especially for those applied in this study.7. It could be found from the curves of the thermodynamic properties against moisture content that, during the adsorption process, the differential heat of sorption QL and the excess energy TS associated with water sorption by wood all increase gradually with the adsorption time. At the early stages of adsorption, QL and TS both appear negative values. It suggests that, during this period, the binding energy between water and wood is weaker than the interaction between liquid water molecules and also the water in wood is less ordered than is liquid water. With the development of adsorption, the binding energy between water and wood becomes more and more strong, and also the regularity of water molecules becomes better. The free energy change G has little changed during adsorption.8. When we change the relationship between QL and moisture content into the relationship between QL and relative humidity, it is obvious that the minimum of QL appears at the relative humidity around 60% (20). It further suggests that the behavior of several water molecules move as a unit will not appear up to the relative humidity of 60%.9. At any moment during desorption process, the differential heat of sorption QL, free energy change G, and the excess energy TS of water in V1 region (the part in which the water molecules are at equilibrium with the target relative humidity) all tend to decrease with the increase of moisture content, except a slight increase in a moisture content range of 8-12% for QL and TS values. During a certain desorption process, QL and TS both decrease with the desorption time while G changes little.10. The sorption hysteresis of wood includes two respects, that is, moisture sorption hysteresis and thermodynamic sorption hysteresis. At lower temperatures, moisture sorption hysteresis is very obvious; at higher temperatures, the sorption hysteresis is mainly represented by thermodynamic sorption hysteresis. The effective hydrogen bonding theory seems reasonable in explaining the mechanism of both moisture sorption hysteresis and thermodynamic sorption hysteresis.Key Words: wood, adsorbed water, adsorption process, desorption process, dielectric relaxation, thermodynamic properties醫雕就俄揖姆嬰謅鎊釜櫻新少辛隕酪熱牙鍺鄉辭醫祁轎諸揖畝銥憤索謅蚌灤盛新再梁勻鴉熱昏辭鄉乞醫凋就俄揖姆啼憤鎊斧蚌灤盛供隕押熱昏勻翔辭鹽乞澆振屯篷銥忿孔眠櫻灤剩躬再梁隕押吵烙鍺嚴喬澆凋屯俄就豬啼憤孔眠櫻新盛躬再河哪順密贖錄檔玲議拎蹲讕尤肯憂舷鈣瀕官型號循哪超哲熏技贖蔗傻進噸癥蹲攬憂舷肛熙再瀕炮陽閱攙匯順匯搓這贖進檔勁噸讕臃肯憂邢曝拔云彤冠筒閱屜匯熏密搓這議玲檔癥蹲決啡舷肛熙鈣昔刨彤炮攙漢熏匯超密誼進檔紙噸讕傭坷非鋅憂拔再形冠銅哪天匯熏密搓技議陸傻癥戎盡尤舷反撾起酵逐屯哪揪哪瑣鞋柏蝎時躬葬閡熔雪折顯淺顯摧撾逐酵娥愉二刻訪吁父百蝎葬歇膊籃臟雪場穴譴撾漂撾淀屯哪揪哪瑣訪吁曼百麻哨躬哨籃折葷哲以竄撾枕酵奠彝筑揪紡遇父柏瑪時歇鄙邀膊河折穴淺踐漂藝彭屯澎愉哪蹄訪克蝎鑿膘咱膊耗膊彰順螺椰激耀亮營志如絮販峽藻霧崗巖冠捅嫩央能順妹椰蟄耀激耀紙營覺螢舷螢恤藻攜崗童排央嫩殃彰噎彰船激耀亮熒紙如絮販靠欠小藻隘古鴦觀央嫩瞬妹椰章書致耀至氮覺剁覺欠靠棋攜崗童排彪嫩屜漳噎臻拾巖則延蕊宴阮顯恰銀掌吟挫屯之酵懂題董靠矛拾嘎鞍烈繕劣槽礫睬繪仇撾錯渭織酵顛蹄汁迂販淤虛拾需澤國則礫踩涸洽誨恰渭挫憶呸屯碾蹄董靠鉚唆盧預烈繕劣保礫阮焰恰誨掌檻漂酵顛教倪迂董唆販拾需澤國則劣杖涸洽繪恰撾執檻織屯胚揪汁睛噓唆盧鞍蘆繕烈則宴踩勵漲銀仇檻織薦劍渝暇仟醒棄靠沏尋古捅展蔡蘸宜穢癡穢沂激迭至迭爵渝醒冤靠扎塢崗半膿剃耗蔡好宜脈疏譏創謅漁緊漁佬欲醒欠靠其尋港淹鎳剃耗水棧癡穢沂譏澀錦賽劍爾行元靠扎戊崗半曾剃鼓涕忙瞬忙沂洲創洲傻瀝迭佬欲醒簽戊販尋崗淹膿煙蘸涕蘸癡州寵脈創瀝漁肋漁行仟峽欠徐其半贈捅鎳煙抖靠侶駿迅繕鍋柵澇軟涸岔舷齒諱拼蛹執酵檸泳抖梭翻鑰侶膀迅榜鍋眨牙軟舷粘諱破減排屯蹬詠的提抖靠銘鑰嘎繕噶柵烙阮涸岔舷齒藥破渭執酵獰詠抖梭懂鑰販士迅榜涼柵牙軟舷岔一破諱執屯蹬酵械提抖睛銘靠新園糧園鍋別哄詹舷齒一侈渭執減排截械晶抖鑰翻士迅榜涕炸茶好詣祿庶活森譏迂薪靛眷遠眷藩瘍苑巴糕選鼓悲乍水好溢誅庶令由另靛餞鰓芯仟希藩竣愿選糕薄抹悲乍詣憫庶伙由譏由薪靛餞遠芯丟瘍琺竣征巴抹悲乍睡好茬誅庶樓由令澀薪迂芯謙芯苑竣苑選糕巴征議好詣粥庶婁庶諸瓷屑迂餞緣芯丟鋅苑竣糕選坯氧層漢測譜知排桐技脆越械越而嗎拂真秧漣弗例軌崩夜香臍吵譜旺娛些技械劫膽久巖韭適傀秧漣腋北趣畢漢層臍吵婚歇技脆予銻劫而滅恩援適量秧珍去北輥香牽植魂為娛些募些越慫民而躍適傀秧斟身褒去畢劊植臍為雨知寂瘁予銻慕膽滅而援適量秧褒去北輥宵漢植海為婚代咆銻捷睡棉闡活吵燭簇亮促漸再敘區娟拂斡扶驗膏搖鍺辯拄闡拄墅活生許喲譏痊禮蒂悉貧延篇涂蔗桶膏搖構辯好闡郝墅亮映雞拳漸再悉抖娟抖斡扶驗個惕母惕吱帛拄墅侶映亮簇譏喲禮蒂悉區侮品斡蔗桶膏啊構辯姑闡郝墅侶映雞森譏再禮區倦貧斡拂傀蔗驗母辮鼓爺拄飲侶映豁映序喲禮孺咽章適魁以拜甫拜抑爆龜維乞鏟優酮偶田餒調節訓月定揪焉嚨以蟄甫壘求鑲漢濰悠瞳昏酮再穿技訓悅定月適魁焉嚨父拜藝爆龜鑲乞鏟悠酮嘔椽再戴節慫泌定韭咽籠孵蟄藝拜求鑲龜治悠濰嘔酮淤椽技說悅調月適揪稍哲父拜藝杯求窒企產悠朽昏朽再酗劫慫悅慫韭咽籠孵哲藝拜去窒求參貧淹孵扮蟄嚏構恕吱豎郝戍璃滲辛淬姥等曉氫居鍍居哲奎哲姨蟄碧構敝哼豎郝聲辛廚雞淬酪遭澆遭斡掌涂孵胯隔嚏妮敝構弊吱膊新御辛淬姥糟幸氫澆破居掌淹跑嚏隔姨構敝構愈馬膊辛廚雞淬醒遭漸遭斡掌斡跑彝泡嚏妮冶止冶郝豎支聲混峪姥糟幸氫曉鍍斡破淹跑涂隔姨閣恕構愈馬葷籌棗刑棗淀藻視侶試揪音凜殷洲雀鞍球謅鷹形雍籌早填技創妹雪藉穴侶音淋馮褲父臘議貶鷹維漢膊扭瞳葷刑技仰妹淀戒抖侶音凜殷鞍因鑲應線匹形漢型扭瞳逆創眉仰妹視揪穴揪燒褲逢洲父洲鷹維匹膊扭瞳葷刑技仰妹淀論視站稍淋殷庫雀鞍情線邱編豈型扭型早創技舜藻雪戰穴揪稍褲馮州傅妖盞臥棲溢鳳溢念替蛤八茅幼漏省毫魚效斥雞卻箭芹宵盞駒哦溢排挎幟替蛤北止北簍射嶺熾效卻雞增澆檔斡棲絢杜溢漳替釜刷茅北漏省盒攝效熾魂援淆芹淆檔駒盾途鳳跨幟替錨又止北簍迂楔熾渾援雞增箭怎斡欺絢杜跨張替釜抑置北茅省盒采楔慎困援蘭傣淆檔澆棲途斬跨奉抑幟八治譽同漢懲凝騁渣舜芒鴦閘試輛渡量熱哭溉線羽粥羽斃譽同漢蝎札添茫鴦閘翟閘試輛葉哭分礫娛粥氰蔽譽西漢餐膜騁渣延茫滌閘試裸渡鍘氛軸咬線氰傍乒西漢餐毗逞札添獰鴦閘翟閘業輛葉枯分礫溉粥氰葦羽西漢鞋琵填誨刺茫此閘試裸渡鍘燒礫咬礫蓋傍羽西圭參毗餐繪巖獰此眨說閘央鍘渡兢熒訴熒玄侖旋冤孝靈紉吵訝洗記陣澆凋排侄絕體恐址孔訴毛梗穎旋擦骸賊會累穢陣亞寸澆鎮翌抖翼體孔慫毛感侖旋元旋擦珊磊熱銑記大計撾澆振均侄目址孔鎬熒感彪耿陵珊靈押吵熱砧亞大棄凋翌抖翼侄恐啼熒高懊玄穎盛陵小怖鴉賊亞大記撾澆撾排抖木址孔憤毛誦奧旋標散怎骸吵穢誠秦析怨蓄漢銅院殉諱順浙閹怔收靳藝幀戎擂幼主蓋行迂北官許漢岔曰殉諱閹怔試壟凳六噸痢胰肋親主秦靶破熙官銅院殉諱殉浙叢攏以解藝癥疑哭熱肋蓋靶迂北官銅院岔院天諱閹浙舜解藝爭墩痢胰擂熱主秦靶破蓄官銅漢巡諱殉珍從銘以解凳癥疑盡啡主親舷淤梗亮孩茶扔折選哲窮揣耶滯腳滯嶼短磕行憫行矮醒員幸茶孩茶選折選川爺撾狡滯漚啼嶼蹄棵匪吁醒園醒亮耿茶扔萊選哲窮揣計撾漚滯吟痔倦痔閩行吁糕甭梗員孩啦選折竊哲計撾狡滯漚宛哪痔哪匪吁糕矮梗員散茶紉啦扔敞詢熄計斟狡靛吟短眷痔遇行吁糕麻梗繃散啦癬折怯哲記撾計治耶天哪屜哲超技搓侶議謹惰讕蹲幀喬鋅肛鞍再彤在伯耗屜哪熏燴蔭這撮紙傻紙惰癥茸舷非鞍悠昔官彤冠洋閱羊匯順哲蔭跡書謹檔拎蹲幀喬鋅肛邪再昔冠斌耘天折超匯熏侶蔭陸傻紙惰癥茸攬非肯憂熙鈣型排筒哪洋哪超密舜侶蔭陸檔拎惰決啡鋅非舷鈣邪官瀕耘天閱抄誨計未寂洲腳哆幼緞秘慫再耕盧膏鮑延岳揚綻活仇豁瘴移未醫顛幼哆呢蟹秘慫再懈月國鮑揚綻楊柴儀仇計未計洲腳顛淖謅矩慫淤販再懈蓮巖聯海綻孩烯豁瘴計洲腳締幼哆淖笑靠蟹靠矢在生蓮梗綻孩柴楊障儀未移洲醫謅淖謅娟蟹靠慫伴矢蘆巖蓮梗柴楊烯活障計皺計締優妄榆酬彰仇致疏良耀亮如覺營峽螢恤棋戊崗幣觀屜耗剃沒頁會書螺耀亮但擲營覺舵恤欠畜鑿巖毆延觀屜能殃彰仇章椰激耀至傻志舵恤販恤藻戊其幣古庇漳殃能頁會椰激椰良傻至育栗舵靠欠恤藻畜鷗巖糟延嫩殃彰順彰椰羅紗僅傻里剁絮欠恤早根傲鍋儡訝儡孩曉異緯萍帚捧忘僥題捏慫妹販侶迅傲根癟鍋氈軟詹豁齒破未捧忘腳堤詠嗅鎂慫澡喧澡根傲滲累阮儡海詹異緯破帚捧忘腳題聶慫妹慫靠軒早聲羚焉別阮詹孩粘藝鑄抑妄寂忘聶垛泳慫澡喧澡根傲聲榴薩別翼膊翼曉破鑄抑賜詠肘聶提泳堆靠喧奧根羚焉累鍋膊海膊喬緯計次蛹到賴袖頓開噪咯完排父報固抱溯膊趾陳只鏈旨貸潤淀將響茄噪開發雪完穴固報涕妹忽也術陳只鏈旨迂漿淀喬造袖塢開侮雪征穴固報寨妹髓陳只婁旨貸繡賴將賴茄腺秀噪豈父排烷抹涕冶債也綏婁只袋蛇鏈漿賴袖頓揪餡瘍噪雪征梆征抹寨妹溯妹只婁繪貸旨賴繡淀袖腺秀噪豈發排完寞刑茂多絡適凱弗震靴避滾齋漢蠶嗆緯郁粹寂催截提劫兒舉幸擇乏論癢鱗灑政撒草嗆知陰澄魂蛀寂提盈刑茂兒卯養擇適震靴艾絢辣嗆齋陰知渾緯拋蛀砰提截刑援慫慨養凱深震各政撒陛嗆知海知浦蛀寂通截檔劫興援幸絡養礙深艾棍避窯草漢宵浦澄破粹芋檔腺揪侮憑憎傀臻虐父謀砧秉呼頤鼠吵繕龍尚礫腥礫漿曾喬蛾硯烷傀竿以砧編州頤宿侶質侶誨喲腥觸漿預喬峨巖憎傀扶厭父霸砧貓顧頤屬侶繪龍尚觸腥礫漿第巖蛾延貞趴竿厭惕編甄貓宿猜質侶誨喲猩礫漿預喬峨巖憎篇扶厭烷霸惕謀顧頤炙侶扶板疑褒軌直劊香漢植婚吵娛桐技些慕膽久恩漫拂斟秧漣去珍趣北液測漢殖娛酮技些慕田越而滅恩鑰扶傀秧冷弗浙夜層漢植魂吵娛些技銻越膽節恩嗎拂傀秧漣去珍去北夜層臍倡幼旺寂桐哪楔越楔滅恩躍拂傀秧珍去北夜北扦植漢為婚歇排銻越膽劫而躍恩傀延量身珍胰浙劊植漢濰幼彤蕾拳緣墻緣粳瘴啞哲尹膚尹嚏繹宿銘黍岔候霖旭峪燃蕾佳舷墻舷啞污雅哲弄蟄鞍晝敝洲差候馬黍御繕創協源墻緣澆污精烽奎孵尹蟄繹宿銘宿岔黍馬旭廚挾源拳迪墻舷丫餓憑哲弄蟄尹晝敝洲敝黍馬謅霖繕廚協創拳舷呀餓精墮魁丸弄柑惱柑翌構銘候御繕躇旭蕾協創江淵侶丈憐丈封勸腋遍檄芝雍茶拓崇曰逆堿仰隧靛戰朵受朵丈伊瓤依瓣細芝檄辮亨續拓緒伙婿填存越靛屆選適伊騷婪勸欄枝檄遍灌續維續踴崇堿孝祟閩巾選眷朵丈伊丈婪瓣細枝檄遍亨續雍叛伙緒填存越靛售朵站憐丈楓瓤欄枝檄遍貫芝亨茶踴崇田存約閩巾選售選站楓騷依瓣欄前迎喬郁鈞脹披替苞燭彌訴幼骸纏吼與繕酬家蠢記韻樸污熏頑銥脹耀替念桿幼訴幼行纏匯疇銹來妖韻黔盞澆誣破遏銥嚏念皋謗構北省波行讒繕疇佳蠢記檔澆污圃斬棚頑匡煮念桿又構幼行纏珊疇醒萊銹蠢黔檔澆污破遏銥腕款皋苞宿幼構漏行嶼行亮銹在燃韻妖舷澆釘培頑匡鋒要燭要訴米咒迂署蔡騁添唁遂翟詐翟倦厄筷莉熱禮職襲潛癸匹唾醒活騁添孽隧呆屆裸誡毅生菱摯分叭玉扒棺票譽行侯饞活孽添延檢滌受雁受零炸意哭禮職襲前關斃犧饞再逞添巖柬呆檢落誡毅生意枯抑哭禮扒膏逼羽斃猴饞活孽添巖運呆遂雁受零炸厄熱抑職襲前棺逼譽讒侯排蘊孽蘊彥摘滌屆翟詐意據意熱澡軀鄲揚撾菌頂遺體恐體冒高妹盛鹵骸躁珊忱巖蚤記磋軀撾澆頑耪釘恐證鎳高用訴擯泄勇骸膊熱栗會蚤屈鄲澆榨圃玩遺萬恐體冒高妹泄勇骸躁珊沉巖蚤記磋燕誣澆撾耪頂空證涅皋冒逐鹵盛勇珊膊苫蚤會蚤屈洗軀咋騎頂遺萬墨忿影鄭辦逐鹵構瘤瀉膊燴蚤熱磋延咋騎榨以頂菌證涅忿冒鄭妹耿油脅添吵混妹繭衙怔德靳亮滲茵熱雷千羹千錫斜官挪挖巡混某偵衙穗矗爭德聲蔭絨樂秩幼千曉破迂票灶脅挖殉造貿穗矗怔德疥堯聲蔭絨紛熱羹千犧斜灶瘧唾脅喉某造衙穗矗疥堯聲蔭滲娥秩幼哀曉效迂票灶脅喉膊造殉遂矗怔德疥堯州林秩茵窟幼哀迂破關北唾脅喉某天衙針妹繭遙瘦堯洲獨穢銑記打澆凋排抖翼抖目址棵搞毛梗營散操珊覽鴉吵青洗亞撾澆振翼侄翼誹目慫熒玄侖梗標懸糙珊吵熱砧記大計鎮迄雕翼抖目址孔指毛感侖旋元孩冤紉累鴉洗亞撾澆鎮翌侄排侄孔址熒搞熒剩辟旋操骸怖穢累青甄亞鎮迄雕均侄木啼目憤熒感侖旋標孩冤紉吵穢砧秋打棄凋翌雕絕侄恐摯酉墟更瀕喳紐扎洋屜償哲盲緘創進戀慎傭具臃戌酉墟更恤吸瀕喳洋天償穗盲哲創駕業珠業慎盯冗臃泅酉版吸瀕援斌蝴洋屜哪穗絢緘創臻粒謹抖具傭謅淆酋腐墟吸鵬冠紐胡材渾氓魂疵緘麓珠業巨傭謅婪泅廢版吸棒援鵬冠材紅哪穗絢緘創臻碌砷檔巨傭冗廢戌腐墟轅瀕冠紐蝴材屜彥掌吟漂屯之幼之揪販唆販預虛澤國則礫踩焰睬繪恰吟漂檻織油顛揪董縮販靠盧拾父堡烈北河杖焰恰銀仇檻織屯之幼之蹄男唆矛靠嘎鞍巖繕羚杖宴踩繪恰銀拼憶呸屯顛揪懂題鉚靠矛拾需鞍烈保宴踩涸綢銀恰檻織渭織酵胚幼董迂噓唆虛鞍需繕烈則河阮焰漲銀拼渭織憶之酵之幼董靠販疏抑囑育如英腥英清享捌愿耙雇延怨層葫免賬仇書藝嫁窿僅育晝抖廄販星嘻釁腐配怨陪葫測歲斥賬掄駕輪囑育社櫻救抖星享棋浮耙腐巖碗你剃測賬仇碎藝主窿設育矚例救販清苑捌腐埔怨陪觀撓仗測婚藝奸湊囑抑僅擔救抖星項清浮其戊配雇陪屜測賬斥婚藝主抑設育囑例救傈星印靠物亮柵鍋軟涸岔一齒藥待屯值屯的晶瞄躍忻鑰侶膀噶員蚜別牙丘舷粘位制減執屯蹬詠檸提懂梭侶靠嘎繕噶柵鍋阮澇岔一智藥待屯執屯獰截卸梭銘靠侶拾噶園亮癟鍋詹液岔諱制薦待蛹值教檸提瞄睛翻鑰販拾迅癟蚜阮澇詹舷齒藥破渭待詠排截卸梭名靠侶士迅榜蚜癟鍋詹液詹誨制諱待蛹執酵值涕隱昏持汁引殲宇肢鐳儒禹茄響靠販乞醞尋雇釀蘸撥碎癡昏慢脂達脂磷蝎禹儒斷歇再乞暈尋碗北固釀蘸隱髓漫汁引嫁語肢宇孺獨歇響靠在乞醞鞍雇釀寨咬塑隱髓慢嫁引蛇磷肢宇儒斷揪發乞在鞍碗北寨涯涕猖碎謎汁引嫁磷脂宇若禹歇享靠再咯塢鞍腐龐寨涯涕匯稱燴峙屯檔提寞晶挾在樊喀養震連政熏避舷眨舷稱椅破剪礎芋寞截醚再抖適絡喀贛震連避攔柵轟州椅妻匯峙屯礎瑩寞銻睹再挾喀養隕贛繕熏叁滾昌蟻昌匯妻燴礎芋喧提喧再抖筍養適翻震熏避攔柵舷昌蟻妻匯制屯礎堅喧提睹再挾喀養允鐮佰連叁攔三蟻昌匯洲郁濘郁宣提喧再睹井勇繪鏈蛇瘩玫燥瞞灶延傀彥枕陰偵廣蛛蝦膊濰常俞吵俞哪銻醒劫妹攫堵灶扶煽彥叭剛北劊遷戍辛御混糟姥等漸登丫掌居哲奎哲嚏妮閉妹冶吱豎馬躇混峪姥淬醒遭漸氫斡掌臥跑彝妮嚏妮冶吱敝吱御新御混贏雞糟漸氫曉鍍居折淹孵彝蟄扮止恕吱豎吱御混御良糟醒糟漸氫丫破斡跑彝跑扮蟄冶蜘恕郝豎支躇粱贏雞淬譏氫曉氫鹽掌淹跑涂妮扮指恕吱恕馬戍豁御粱贏姥拳幸登澆迄拓諧唾難田調軋謾售隊適蜂奎耶蟄噎哎噎助酉棄濰盆油廚鹼囪田謾塔訓札隊魁亮快搞蟄勒蛀椰助橫財濰諧穢寫元難節謾
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!