资源描述
学案14导数在研究函数中的应用0导学目标: 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值自主梳理1导数和函数单调性的关系:(1)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是_函数,f(x)>0的解集与定义域的交集的对应区间为_区间;(2)若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是_函数,f(x)<0的解集与定义域的交集的对应区间为_区间;(3)若在(a,b)上,f(x)0,且f(x)在(a,b)的任何子区间内都不恒等于零f(x)在(a,b)上为_函数,若在(a,b)上,f(x)0,且f(x)在(a,b)的任何子区间内都不恒等于零f(x)在(a,b)上为_函数2函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,如果在x0附近的左侧_,右侧_,那么f(x0)是极大值;如果在x0附近的左侧_,右侧_,那么f(x0)是极小值(2)求可导函数极值的步骤求f(x);求方程_的根;检查f(x)在方程_的根左右值的符号如果左正右负,那么f(x)在这个根处取得_;如果左负右正,那么f(x)在这个根处取得_自我检测1.已知f(x)的定义域为R,f(x)的导函数f(x)的图象如图所示,则 ()Af(x)在x1处取得极小值Bf(x)在x1处取得极大值Cf(x)是R上的增函数Df(x)是(,1)上的减函数,(1,)上的增函数2(2009·广东)函数f(x)(x3)ex的单调递增区间是 ()A(,2)B(0,3)C(1,4)D(2,)3(20xx·济宁模拟)已知函数yf(x),其导函数yf(x)的图象如图所示,则yf(x)()A在(,0)上为减函数B在x0处取极小值C在(4,)上为减函数D在x2处取极大值4设p:f(x)x32x2mx1在(,)内单调递增,q:m,则p是q的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件5(20xx·福州模拟)已知函数f(x)x3ax2bxa2在x1处取极值10,则f(2)_.探究点一函数的单调性例1已知aR,函数f(x)(x2ax)ex(xR,e为自然对数的底数)(1)当a2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(1,1)上单调递增,求a的取值范围;(3)函数f(x)能否为R上的单调函数,若能,求出a的取值范围;若不能,请说明理由变式迁移1(2009·浙江)已知函数f(x)x3(1a)x2a(a2)xb(a,bR)(1)若函数f(x)的图象过原点,且在原点处的切线斜率是3,求a,b的值;(2)若函数f(x)在区间(1,1)上不单调,求a的取值范围探究点二函数的极值例2若函数f(x)ax3bx4,当x2时,函数f(x)有极值.(1)求函数f(x)的解析式;(2)若关于x的方程f(x)k有三个零点,求实数k的取值范围变式迁移2设x1与x2是函数f(x)aln xbx2x的两个极值点(1)试确定常数a和b的值;(2)试判断x1,x2是函数f(x)的极大值点还是极小值点,并说明理由探究点三求闭区间上函数的最值例3(20xx·六安模拟)已知函数f(x)x3ax2bxc,曲线yf(x)在点x1处的切线为l:3xy10,若x时,yf(x)有极值(1)求a,b,c的值;(2)求yf(x)在3,1上的最大值和最小值变式迁移3已知函数f(x)ax3x2bx(其中常数a,bR),g(x)f(x)f(x)是奇函数(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间1,2上的最大值和最小值分类讨论求函数的单调区间例(12分)(2009·辽宁)已知函数f(x)x2ax(a1)ln x,a>1.(1)讨论函数f(x)的单调性;(2)证明:若a<5,则对任意x1,x2(0,),x1x2,有>1.多角度审题(1)先求导,根据参数a的值进行分类讨论;(2)若x1>x2,结论等价于f(x1)x1>f(x2)x2,若x1<x2,问题等价于f(x1)x1<f(x2)x2,故问题等价于yf(x)x是单调增函数【答题模板】(1)解f(x)的定义域为(0,)f(x)xa.2分若a11,即a2时,f(x).故f(x)在(0,)上单调递增若a1<1,而a>1,故1<a<2时,则当x(a1,1)时,f(x)<0;当x(0,a1)及x(1,)时,f(x)>0,故f(x)在(a1,1)上单调递减,在(0,a1),(1,)上单调递增若a1>1,即a>2时,同理可得f(x)在(1,a1)上单调递减,在(0,1),(a1,)上单调递增6分(2)证明考虑函数g(x)f(x)xx2ax(a1)ln xx.则g(x)x(a1)2(a1)1(1)2.由于1<a<5,故g(x)>0,即g(x)在(0,)上单调递增,从而当x1>x2>0时,有g(x1)g(x2)>0,即f(x1)f(x2)x1x2>0,故>1.10分当0<x1<x2时,有>1.综上,若a<5,对任意x1,x2(0,),x1x2有>1.12分【突破思维障碍】(1)讨论函数的单调区间的关键是讨论导数大于0或小于0的不等式的解集,一般就是归结为一个一元二次不等式的解集的讨论,在能够通过因式分解得到导数等于0的根的情况下,根的大小是分类的标准;(2)利用导数解决不等式问题的主要方法就是构造函数,通过函数研究函数的性质进而解决不等式问题1求可导函数单调区间的一般步骤和方法:(1)确定函数f(x)的定义域;(2)求f(x),令f(x)0,求出它在定义域内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性2可导函数极值存在的条件:(1)可导函数的极值点x0一定满足f(x0)0,但当f(x1)0时,x1不一定是极值点如f(x)x3,f(0)0,但x0不是极值点(2)可导函数yf(x)在点x0处取得极值的充要条件是f(x0)0,且在x0左侧与右侧f(x)的符号不同3函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值4求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值 (满分:75分)一、选择题(每小题5分,共25分)1(20xx·大连模拟)设f(x),g(x)是R上的可导函数,f(x)、g(x)分别为f(x)、g(x)的导函数,且f(x)·g(x)f(x)g(x)<0,则当a<x<b时,有 ()Af(x)g(b)>f(b)g(x)Bf(x)g(a)>f(a)g(x)Cf(x)g(x)>f(b)g(b)Df(x)g(x)>f(a)g(a)2.函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点 ()A1个B2个C3个D4个3(20xx·嘉兴模拟)若函数ya(x3x)在区间上为减函数,则a的取值范围是 ()Aa>0B1<a<0Ca>1D0<a<14已知函数f(x)x42x33m,xR,若f(x)90恒成立,则实数m的取值范围是()AmBm>CmDm<5设aR,若函数yeax3x,xR有大于零的极值点,则 ()Aa>3Ba<3Ca>Da<题号12345答案二、填空题(每小题4分,共12分)6(2009·辽宁)若函数f(x)在x1处取极值,则a_.7已知函数f(x)的导函数f(x)的图象如右图所示,给出以下结论:函数f(x)在(2,1)和(1,2)上是单调递增函数;函数f(x)在(2,0)上是单调递增函数,在(0,2)上是单调递减函数;函数f(x)在x1处取得极大值,在x1处取得极小值;函数f(x)在x0处取得极大值f(0)则正确命题的序号是_(填上所有正确命题的序号)8已知函数f(x)x3mx2(m6)x1既存在极大值又存在极小值,则实数m的取值范围为_三、解答题(共38分)9(12分)求函数f(x)的极值10(12分)(20xx·秦皇岛模拟)已知a为实数,且函数f(x)(x24)(xa)(1)求导函数f(x);(2)若f(1)0,求函数f(x)在2,2上的最大值、最小值11(14分)(20xx·汕头模拟)已知函数f(x)x3mx2nx2的图象过点(1,6),且函数g(x)f(x)6x的图象关于y轴对称(1)求m,n的值及函数yf(x)的单调区间;(2)若a>0,求函数yf(x)在区间(a1,a1)内的极值答案 自主梳理1(1)增增(2)减减(3)增减2.(1)f(x)>0f(x)<0f(x)<0f(x)>0(2)f(x)0f(x)0极大值极小值自我检测1C2.D3.C4.C518解析f(x)3x22axb,由题意即得a4,b11或a3,b3.但当a3时,f(x)3x26x30,故不存在极值,a4,b11,f(2)18.课堂活动区例1解题导引(1)一般地,涉及到函数(尤其是一些非常规函数)的单调性问题,往往可以借助导数这一重要工具进行求解函数在定义域内存在单调区间,就是不等式f(x)>0或f(x)<0在定义域内有解这样就可以把问题转化为解不等式问题(2)已知函数在某个区间上单调求参数问题,通常是解决一个恒成立问题,方法有分离参数法,利用二次函数中恒成立问题解决(3)一般地,可导函数f(x)在(a,b)上是增(或减)函数的充要条件是:对任意x(a,b),都有f(x)0(或f(x)0),且f(x)在(a,b)的任何子区间内都不恒等于零特别是在已知函数的单调性求参数的取值范围时,要注意“等号”是否可以取到解(1)当a2时,f(x)(x22x)ex,f(x)(2x2)ex(x22x)ex(x22)ex.令f(x)>0,即(x22)ex>0,ex>0,x22>0,解得<x<.函数f(x)的单调递增区间是(,)(2)函数f(x)在(1,1)上单调递增,f(x)0对x(1,1)都成立f(x)x2(a2)xaexx2(a2)xaex0对x(1,1)都成立ex>0,x2(a2)xa0对x(1,1)都成立,即x2(a2)xa0对x(1,1)恒成立设h(x)x2(a2)xa只须满足,解得a.(3)若函数f(x)在R上单调递减,则f(x)0对xR都成立,即x2(a2)xaex0对xR都成立ex>0,x2(a2)xa0对xR都成立(a2)24a0,即a240,这是不可能的故函数f(x)不可能在R上单调递减若函数f(x)在R上单调递增,则f(x)0对xR都成立,即x2(a2)xaex0对xR都成立ex>0,x2(a2)xa0对xR都成立而x2(a2)xa0不可能恒成立,故函数f(x)不可能在R上单调递增综上可知函数f(x)不可能是R上的单调函数变式迁移1解(1)由题意得f(x)3x22(1a)xa(a2),又,解得b0,a3或a1.(2)由f(x)0,得x1a,x2.又f(x)在(1,1)上不单调,即或解得或所以a的取值范围为(5,)(,1)例2解题导引本题研究函数的极值问题利用待定系数法,由极值点的导数值为0,以及极大值、极小值,建立方程组求解判断函数极值时要注意导数为0的点不一定是极值点,所以求极值时一定要判断导数为0的点左侧与右侧的单调性,然后根据极值的定义判断是极大值还是极小值解(1)由题意可知f(x)3ax2b.于是,解得故所求的函数解析式为f(x)x34x4.(2)由(1)可知f(x)x24(x2)(x2)令f(x)0得x2或x2,当x变化时,f(x),f(x)的变化情况如下表所示:x(,2)2(2,2)2(2,)f(x)00f(x)单调递增极大值单调递减极小值单调递增因此,当x2时,f(x)有极大值,当x2时,f(x)有极小值,所以函数的大致图象如图,故实数k的取值范围为(,)变式迁移2解(1)f(x)2bx1,.解得a,b.(2)f(x)()1.函数定义域为(0,),列表x(0,1)1(1,2)2(2,)f(x)00f(x)单调递减极小值单调递增极大值单调递减x1是f(x)的极小值点,x2是f(x)的极大值点例3解题导引设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大值和最小值的步骤:(1)求函数yf(x)在(a,b)内的极值(2)将函数yf(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值解(1)由f(x)x3ax2bxc,得f(x)3x22axb,当x1时,切线l的斜率为3,可得2ab0;当x时,yf(x)有极值,则f0,可得4a3b40.由解得a2,b4,又切点的横坐标为x1,f(1)4.1abc4.c5.(2)由(1),得f(x)x32x24x5,f(x)3x24x4.令f(x)0,得x2或x,f(x)<0的解集为,即为f(x)的减区间3,2)、是函数的增区间又f(3)8,f(2)13,f,f(1)4,yf(x)在3,1上的最大值为13,最小值为.变式迁移3解(1)由题意得f(x)3ax22xb.因此g(x)f(x)f(x)ax3(3a1)x2(b2)xb.因为函数g(x)是奇函数,所以g(x)g(x),即对任意实数x,有a(x)3(3a1)(x)2(b2)(x)bax3(3a1)x2(b2)xb,从而3a10,b0,解得a,b0,因此f(x)的表达式为f(x)x3x2.(2)由(1)知g(x)x32x,所以g(x)x22,令g(x)0,解得x1,x2,则当x<或x>时,g(x)<0,从而g(x)在区间(,),(,)上是减函数;当<x<时,g(x)>0,从而g(x)在区间(,)上是增函数由前面讨论知,g(x)在区间1,2上的最大值与最小值只能在x1,2时取得,而g(1),g(),g(2).因此g(x)在区间1,2上的最大值为g(),最小值为g(2).课后练习区1C2.A3.A4.A5.B63解析f(x)(),又x1为函数的极值,f(1)0.12×1a0,即a3.7解析观察函数f(x)的导函数f(x)的图象,由单调性、极值与导数值的关系直接判断8(,3)(6,)解析f(x)3x22mxm60有两个不等实根,则4m212×(m6)>0,m>6或m<3.9解f(x)(),由f(x)0得x2,1.(4分)当x(,2)时f(x)<0,当x(2,1)时f(x)>0,故x2是函数的极小值点,故f(x)的极小值为f(2);(8分)当x(2,1)时f(x)>0,当x(1,)时f(x)<0,故x1是函数的极大值点,所以f(x)的极大值为f(1)1.(12分)10解(1)由f(x)x3ax24x4a,得f(x)3x22ax4.(4分)(2)因为f(1)0,所以a,所以f(x)x3x24x2,f(x)3x2x4.又f(x)0,所以x或x1.又f,f(1),f(2)0,f(2)0,所以f(x)在2,2上的最大值、最小值分别为、.(12分)11解(1)由函数f(x)图象过点(1,6),得mn3. 由f(x)x3mx2nx2,得f(x)3x22mxn,则g(x)f(x)6x3x2(2m6)xn.而g(x)的图象关于y轴对称,所以0.所以m3,代入,得n0.(4分)于是f(x)3x26x3x(x2)由f(x)>0,得x>2或x<0,故f(x)的单调递增区间是(,0)(2,);由f(x)<0,得0<x<2, 故f(x)的单调递减区间是(0,2)(8分)(2)由(1)得f(x)3x(x2),令f(x)0,得x0或x2.当x变化时,f(x)、f(x)的变化情况如下表:x(,0)0(0,2)2(2,)f(x)00f(x)极大值极小值 (10分)由此可得:当0<a<1时,f(x)在(a1,a1)内有极大值f(0)2,无极小值;当a1时,f(x)在(a1,a1)内无极值;当1<a<3时,f(x)在(a1,a1)内有极小值f(2)6,无极大值;当a3时,f(x)在(a1,a1)内无极值(12分)综上得:当0<a<1时,f(x)有极大值2,无极小值;当1<a<3时,f(x)有极小值6,无极大值;当a1或a3时,f(x)无极值(14分)
展开阅读全文