【走向高考】全国通用高考数学二轮复习 第一部分 微专题强化练 专题2 函数的概念、图象与性质含解析

上传人:仙*** 文档编号:41996170 上传时间:2021-11-24 格式:DOC 页数:11 大小:222KB
返回 下载 相关 举报
【走向高考】全国通用高考数学二轮复习 第一部分 微专题强化练 专题2 函数的概念、图象与性质含解析_第1页
第1页 / 共11页
【走向高考】全国通用高考数学二轮复习 第一部分 微专题强化练 专题2 函数的概念、图象与性质含解析_第2页
第2页 / 共11页
【走向高考】全国通用高考数学二轮复习 第一部分 微专题强化练 专题2 函数的概念、图象与性质含解析_第3页
第3页 / 共11页
点击查看更多>>
资源描述
【走向高考】(全国通用)2016高考数学二轮复习 第一部分 微专题强化练 专题2 函数的概念、图象与性质一、选择题1(文)(2014新课标文,5)设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()Af(x)g(x)是偶函数B|f(x)|g(x)是奇函数Cf(x)|g(x)|是奇函数D|f(x)g(x)|是奇函数答案C解析本题考查函数的奇偶性由f(x)是奇函数,g(x)是偶函数,得f(x)f(x),g(x)g(x)f(x)g(x)是奇函数,|f(x)|g(x)是偶函数,f(x)|g(x)|是奇函数,|f(x)g(x)|是偶函数,选C.方法点拨函数奇偶性判定方法:紧扣函数奇偶性的定义和函数的定义域关于坐标原点对称、函数图象的对称性等对问题进行分析转化,特别注意“奇函数若在x0处有定义,则一定有f(0)0,偶函数一定有f(|x|)f(x)”在解题中的应用(理)(2015安徽理,2)下列函数中,既是偶函数又存在零点的是()Aycos xBysin xCyln xDyx21答案A解析考查函数的奇偶性和函数零点的概念由选项可知,B,C项均不是偶函数,故排除B,C;A,D项是偶函数,但D项与x轴没有交点,即D项的函数不存在零点,故选A.2(文)函数f(x)的定义域为()A(3,0B(3,1C(,3)(3,0D(,3)(3,1答案A解析本题考查了定义域的求法由题意知即即30,解得x1,选C.方法点拨1.求解函数的定义域一般应遵循以下原则:f(x)是整式时,定义域是全体实数;f(x)是分式时,定义域是使分母不为零的一切实数;f(x)为偶次根式时,定义域是使被开方数为非负值时的实数的集合;对数函数的真数大于零,且当对数函数或指数函数的底数中含变量时,底数需大于0且不等于1;零指数幂的底数不能为零;若f(x)是由有限个基本初等函数运算合成的函数,则其定义域一般是各基本初等函数的定义域的交集;对于求复合函数定义域的问题,一般步骤是:若已知f(x)的定义域为a,b,其复合函数fg(x)的定义域应由不等式ag(x)b解出;对于含字母参数的函数求其定义域,根据具体情况需对字母参数进行分类讨论;由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义2高考中常将指数函数、对数函数与二次函数或幂函数(例如分式函数、含偶次方根的函数)等结合起来考查,这时一般应从外到内逐层剥离解决例如,y,从总体上看是分式,故先由分母不为0得到0,再由偶次方根下非负得到2log3x0,即log3x2,最后由对数函数单调性及对数函数定义域得到0x0时,函数yff(x)1的零点个数为()A1B2C3D4答案D解析结合图象分析当k0时,ff(x)1,则f(x)t1(,)或f(x)t2(0,1)对于f(x)t1,存在两个零点x1、x2;对于f(x)t2,存在两个零点x3、x4,共存在4个零点,故选D.6函数f(x)log(x24)的单调递增区间为()A(0,)B(,0)C(2,)D(,2)答案D解析本题考查复合函数的单调性,f(x)log(x24)由ylogu及ux24复合而成,ylogu在定义域内为减函数,而ux24在(,2)上是减函数,在(2,)上是增函数,所以f(x)log(x24)的单调递增区间(,2),选D.7(文)已知函数f(x)g(x)log2x,则f(x)与g(x)两函数图象的交点个数为()A4B3C2D1答案C解析画出两函数的图象知,当0x1时,f(x)0g(x)恒成立,故选C.(理)函数f(x)logcosx(x0,排除D,故选C.解法2:利用复合函数单调性的判断方法,由于ucosx在区间(,0)、(0,)上分别为增函数和减函数,而ylogu为减函数,故复合函数f(x)logcosx在区间(,0)、(0,)上分别为减函数和增函数,故选C.8(文)如果我们定义一种运算:gh已知函数f(x)2x1,那么函数f(x1)的大致图象是()答案B解析由定义知,当x0时,2x1,f(x)2x,当x0时,2x1,f(x)1,f(x)其图象易作,f(x1)的图象可由f(x)的图象向右平移1个单位得到,故选B.方法点拨1.新定义题型要准确理解把握新定义的含义,发掘出其隐含条件2恒成立问题要注意恒成立的临界点及特值法应用3分段函数的单调性和最值问题,一般是在各段上分别讨论(理)定义两种运算:ab,ab,则函数f(x)为()A奇函数B偶函数C既是奇函数又为偶函数D非奇函数且非偶函数答案A解析本题考查对新运算的理解和应用以及函数奇偶性的判断方法,难度中等根据所给的运算定义得函数f(x),求出函数的定义域为2,0)(0,2,关于原点对称,且x20,所以函数f(x),易知f(x)f(x),所以原函数为奇函数,故选A.易错分析本题中常见错误是不化简函数的解析式而直接将x代入,导致选择错误答案D.9(文)已知f(x),则f(2013)等于()A1B2C0D1答案D解析201340352,f(2013)f(2)log221.(理)(2014湖南理,3)已知f(x)、g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)x3x21,则f(1)g(1)()A3B1C1D3答案C解析本题考查函数的奇偶性分别令x1和x1可得f(1)g(1)3且f(1)g(1)1f(1)g(1)1,则f(1)g(1)1,故选C.10(2015浙江嘉兴测试一)偶函数f(x)在0,)上为增函数,若不等式f(ax1)f(2x2)恒成立,则实数a的取值范围为()A(2,2)B(2,2)C(2,2)D(2,2)答案B解析本题考查函数的奇偶性与单调性的综合应用,如何利用单调性构造不等式是解答本题的关键所在,难度中等由于函数为偶函数,故f(ax1)f(|ax1|),因此f(ax1)f(2x2)f(|ax1|)f(2x2),据已知单调性可得f(|ax1|)f(2x2)|ax1|2x2,据题意可得不等式|ax1|2x2恒成立,即(2x2)ax12x2恒成立,据二次函数知识可知解得2a0,0a1.(理)函数f(x)()x22mxm21的单调增区间与值域相同,则实数m的取值为()A2B2C1D1答案B解析x22mxm21(xm)211,()x22mxm212,f(x)的值域为2,),y()x单调递减,y(xm)21的单调减区间为m,),f(x)的单调增区间为m,)由条件知m2.方法点拨函数单调性判定方法一是紧扣定义;二是充分利用函数的奇偶性、函数的周期性和函数图象的直观性进行分析转化函数的单调性往往与不等式的解、方程的解等问题交汇,要注意这些知识的综合运用三是利用导数研究对于选择、填空题若能画出图象一般用数形结合法;而对于由基本初等函数通过加、减运算或复合而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数用导数法;对于抽象函数一般用定义法12(2015浙江宁波期末)设函数yf(x)是定义在R上以1为周期的函数,若g(x)f(x)2x在区间2,3上的值域为2,6,则函数g(x)在2012,2012上的值域为()A2,6B4030,4024C4020,4034D4028,4016答案C解析本题考查函数性质与归纳推理的应用,考查对抽象函数的理解和应用,难度较大求出几个区间的值域,再进行归纳推理当x3,4时,x12,3,g(x1)f(x1)2(x1),且g(x1)2,6,又f(x)的周期为1,所以f(x)2xf(x1)2xg(x1)24,4,所以g(x)在2,4内的值域为4,6同理,当x4,5时,g(x)的值域是6,2,所以g(x)在2,5内的值域为6,6,g(x)在2,2012内的值域为4020,6g(x)在1,2内的值域为0,8,g(x)在1,2012内的值域为4020,8,所以g(x)在2012,2012内的值域为4020,4034,故选C.易错分析抽象函数值域的求解是一个难点,尤其是与年份相关的周期函数的值域问题,难度更大利用函数的周期性及整体思想将函数进行变换,使函数g(x)能够特殊化,从而归纳得出结论13(文)已知f(x1)为偶函数,且f(x)在区间(1,)上单调递减,af(2)、bf(log32)、cf(),则有 ()AabcBbcaCcbaDacb答案D解析f(x1)为偶函数,其图象关于y轴对称,函数f(x)的图象关于直线x1对称,又函数f(x)在(1,)上单调递减,函数f(x)在(,1)上单调递增,f(2)f(0),且0log32,f(2)f()f(log32),acb.(理)已知函数f(x),若存在k使得函数f(x)的值域是0,2,则实数a的取值范围是()A,)B,C(0,D2答案B解析当a2时,f(x)x53x2,kx2,f(2)28不合题意,a2,排除A、D;当a时,kxa,k,当k时,1x,1x2,log2log2(1x)1,又log21,f(2),则实数a的取值范围是_答案(1,)解析f(x3)f(x),f(x)f(x),得f(2)f(23)f(1)f(1),又f(1)1,所以f(2)1,即1,解得1a0)上的奇函数,令g(x)af(x)b,并有关于函数g(x)的四个论断:若a0,对于1,1内的任意实数m、n(m0恒成立;函数g(x)是奇函数的充要条件是b0;aR,g(x)的导函数g(x)有两个零点;若a1,b0,又a0,0恒成立,故正确;g(x)为奇函数g(x)g(x)af(x)baf(x)b2baf(x)f(x),f(x)为奇函数,f(x)f(x)0,故g(x)为奇函数b0,故正确;g(x)af (x),由图知f(x)在c,c上减、增、减,f (x)在c,c上取值为负、正、负,从而当a0时,g(x)0在c,c上与x轴必有两个交点,又a0时,g(x)0在c,c上恒成立,aR,g(x)在c,c上有两个零点,故正确;取a1,b5,则g(x)f(x)5与x轴无交点,方程g(x)0无实根,错误三、解答题16已知函数f(x)的定义域为R,对任意的实数x、y都有f(xy)f(x)f(y),且f()0,当x时,f(x)0.(1)求f(1);(2)判断f(x)的增减性并证明解析(1)令xy,得f(1)f()f().(2)f(x)为增函数,证明:任取x1、x2R,且x2x1,xx2x10,则:yf(x2)f(x1)f(x1x)f(x1)f(x)f(x1)f(x1)f(x)f(x)f()f(x),又x0,x,f(x)0,f(x2)f(x1),f(x)在R上是增函数方法点拨抽象函数的求值与性质讨论,常结合条件式通过赋值转化解决,赋值时要紧扣目标进行如判断奇偶性要创设条件产生f(x)与f(x)的关系式;判断单调性,则要在设出x1x2的条件下,构造产生f(x1)f(x2)(或),朝着可判断正负(或可与1比较大小)的方向转化解抽象函数的不等式,则要将原不等式利用条件转化产生f(x1)f(x2)的形式.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!