人教版 高中数学选修23 教案2.3.2离散型随机变量的方差含反思

上传人:仙*** 文档编号:41728056 上传时间:2021-11-23 格式:DOC 页数:4 大小:114KB
返回 下载 相关 举报
人教版 高中数学选修23 教案2.3.2离散型随机变量的方差含反思_第1页
第1页 / 共4页
人教版 高中数学选修23 教案2.3.2离散型随机变量的方差含反思_第2页
第2页 / 共4页
人教版 高中数学选修23 教案2.3.2离散型随机变量的方差含反思_第3页
第3页 / 共4页
点击查看更多>>
资源描述
人教版高中数学精品资料§232离散型随机变量的方差教学目标:知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。过程与方法:了解方差公式“D(a+b)=a2D”,以及“若(n,p),则D=np(1p)”,并会应用上述公式计算有关随机变量的方差 。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题授课类型:新授课课时安排:1课时教学过程:一、复习引入:1. 期望的一个性质: 2.若B(n,p),则E=np 二、讲解新课:1. 方差: 对于离散型随机变量,如果它所有可能取的值是,且取这些值的概率分别是,那么,称为随机变量的均方差,简称为方差,式中的是随机变量的期望2. 标准差:的算术平方根叫做随机变量的标准差,记作3.方差的性质:(1);(2);(3)若B(n,p),则np(1-p) 三、讲解范例:例1随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.解:抛掷散子所得点数X 的分布列为123456P从而; .例2有甲乙两个单位都愿意聘用你,而你能获得如下信息:甲单位不同职位月工资X1/元1200140016001800获得相应职位的概率P10.40.30.20.1乙单位不同职位月工资X2/元1000140018002000获得相应职位的概率P20.40.30.20.1根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 , DX1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3 + (1600 -1400 )2×0.2+(1800-1400) 2×0. 1= 40 000 ; EX21 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 , DX2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l = 160000 . 因为EX1 =EX2, DX1<DX2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位例3设随机变量的分布列为12nP求D 解:(略), 例4已知离散型随机变量的概率分布为1234567P离散型随机变量的概率分布为3738394414243P求这两个随机变量期望、均方差与标准差解:;=0.04, .四、课堂练习: 1 .已知,则的值分别是( )A;B;C;D 答案:1.D 2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止求在取得正品之前已取出次品数的期望五、小结 :求离散型随机变量的方差、标准差的步骤:对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要 六、课后作业: 同步试卷七、板书设计(略) 八、教学反思:求离散型随机变量的方差、标准差的步骤对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!