齿轮齿条式转向器设计

上传人:仙*** 文档编号:34733016 上传时间:2021-10-23 格式:DOC 页数:28 大小:1.05MB
返回 下载 相关 举报
齿轮齿条式转向器设计_第1页
第1页 / 共28页
齿轮齿条式转向器设计_第2页
第2页 / 共28页
齿轮齿条式转向器设计_第3页
第3页 / 共28页
点击查看更多>>
资源描述
辽宁工程技术大学课程设计1齿轮齿条式转向器简介1.1齿轮齿条式转向系转向系是通过对 左、右转向之间的合理匹配来保证汽车能沿着理想的轨迹运动的机构,它由转向操纵机构 转向器 和专项传动机构组成 。齿轮齿条机械转向器是将司机对转向盘的转动变为或齿条沿转向车轴轴向的移动,并按照一定的角传动比和力传动比进行传递的机构。机械转向器与动力系统相结合,构成动力转向系统。高级轿车和中兴载货汽车为了使转向轻便,多采用这种动力转向系统。采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。1.2转向系设计要求通常,对转向系的主要要求是:(1)保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便;(2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑;(3) 传给转向盘的反冲要尽可能的小;(4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态;(5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员;(6) 转向器和专项传动机构因摩擦产生间隙时,应能调整而消除之。2转向系主要性能参数2.1转向器的效率功率P1从转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,用符号+表示,+=(P1P2)Pl;反之称为逆效率,用符号-表示,- =(P3P2)P3。式中,P2为转向器中的摩擦功率;P3为作用在转向摇臂轴上的功率。为了保证转向时驾驶员转动转向盘轻便,要求正效率高。为了保证汽车转向后转向轮和转向盘能自动返回到直线行驶位置,又需要有一定的逆效率。为了减轻在不平路面上行驶时驾驶员的疲劳,车轮与路面之间的作用力传至转向盘上要尽可能小,防止打手又要求此逆效率尽可能低。2.1.1转向器正效率+影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。(1)转向器类型、结构特点与效率 在前述四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。同一类型转向器,因结构不同效率也不一样。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承等三种结构之一。第一种结构除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种转向器的效率仅有54。另外两种结构的转向器效率,根据试验结果分别为70和75。转向摇臂轴轴承的形式对效率也有影响,用滚针轴承比用滑动轴承可使正或逆效率提高约10。(2)转向器的结构参数与效率 如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆和螺杆类转向器,其效率可用下式计算 (2.1)式中,o为蜗杆(或螺杆)的螺线导程角;为摩擦角,=arctanf;f为摩擦因数。2.1.2转向器逆效率-根据逆效率大小不同,转向器又有可逆式、极限可逆式和不可逆式之分。路面作用在车轮上的力,经过转向系可大部分传递到转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向后,转向轮和转向盘自动回正。这既减轻了驾驶员的疲劳,又提高了行驶安全性。但是,在不平路面上行驶时,车轮受到的冲击力,能大部分传至转向盘,造成驾驶员“打手”,使之精神状态紧张,如果长时间在不平路面上行驶,易使驾驶员疲劳,影响安全驾驶。属于可逆式的转向器有齿轮齿条式和循环球式转向器。不可逆式转向器,是指车轮受到的冲击力不能传到转向盘的转向器。该冲击力由转向传动机构的零件承受,因而这些零件容易损坏。同时,它既不能保证车轮自动回正,驾驶员又缺乏路面感觉;因此,现代汽车不采用这种转向器。 极限可逆式转向器介于上述两者之间。在车轮受到冲击力作用时,此力只有较小一部分传至转向盘。它的逆效率较低,在不平路面上行驶时,驾驶员并不十分紧张,同时转向传动机构的零件所承受的冲击力也比不可逆式转向器要小。 如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,则逆效率可用下式计算 (2.2)式(2.1)和式(2.2)表明:增加导程角o,正、逆效率均增大。受-增大的影响,o不宜取得过大。当导程角小于或等于摩擦角时,逆效率为负值或者为零,此时表明该转向器是不可逆式转向器。为此,导程角必须大于摩擦角。通常螺线导程角选在810之间。2.2传动比的变化特性2.2.1转向系传动比转向系的传动比包括转向系的角传动比和转向系的力传动比从轮胎接地面中心作用在两个转向轮上的合力2Fw与作用在转向盘上的手力Fh之比,称为力传动比,即 ip=2FwFh 。转向盘转动角速度 w 与同侧转向节偏转角速度 k 之比,称为转向系角传动比,即;式中,d 为转向盘转角增量;dk 为转向节转角增量;dt为时间增量。它又由转向器角传动比iw 和转向传动机构角传动比iw 所组成,即 iwo=iw iw 。转向盘角速度w与摇臂轴转动角速度K之比,称为转向器角传动比iw, 即。式中,dp为摇臂轴转角增量。此定义适用于除齿轮齿条式之外的转向器。摇臂轴转动角速度p与同侧转向节偏转角速度k之比,称为转向传动机构的角传动比iw,即。2.2.2力传动比与转向系角传动比的关系轮胎与地面之间的转向阻力Fw和作用在转向节上的转向阻力矩 Mr 之间有如下关系 (2.3)式中,为主销偏移距,指从转向节主销轴线的延长线与支承平面的交点至车轮中心平面与支承平面交线间的距离。作用在转向盘上的手力Fh可用下式表示 (2.4)式中,Mh为作用在转向盘上的力矩;Dsw为转向盘直径。 将式(1.3)、式(1.4)代入 ip=2FwFh 后得到 (2.5)分析式(2.5)可知,当主销偏移距a小时,力传动比 ip 应取大些才能保证转向轻便。通常轿车的 a 值在0406倍轮胎的胎面宽度尺寸范围内选取,而货车的d值在4060mm范围内选取。转向盘直径 Dsw 根据车型不同在JB450586转向盘尺寸标准中规定的系列内选取。如果忽略摩擦损失,根据能量守恒原理,2MrMh可用下式表示 (2.6)将式(1.6)代人式(1.5)后得到 (2.7)当 和 Dsw 不变时,力传动比 ip 越大,虽然转向越轻,但 iwo 也越大,表明转向不灵敏。根据相互啮合齿轮的基圆齿距必须相等, 即 Pbl=Pb2。其中齿轮基圆齿距Pbl=mlcos1,齿条基圆齿距 Pb2=m2cos2 。由上述两式可知:当齿轮具有标准模数m1和标准压力角1与一个具有变模数m2、变压力角2的齿条相啮合,并始终保持 m1cosol=m2coso2时,它们就可以啮合运转。如果齿条中部(相当汽车直线行驶位置)齿的压力角最大,向两端逐渐减小(模数也随之减小),则主动齿轮啮合半径也减小,致使转向盘每转动某同一角度时,齿条行程也随之减小。因此,转向器的传动比是变化的。 循环球齿条齿扇式转向器的角传动比 iw=2rP。因结构原因,螺距 P 不能变化,但可以用改变齿扇啮合半径 r 的方法,达到使循环球齿条齿扇式转向器实现变速比的目的。随转向盘转角变化,转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的因素,主要是转向轴负荷大小和对汽车机动能力的要求。若转向轴负荷小,在转向盘全转角范围内,驾驶员不存在转向沉重问题。装用动力转向的汽车,因转向阻力矩由动力装置克服,所以在上述两种情况下,均应取较小的转向器角传动比并能减少转向盘转动的总圈数,以提高汽车的机动能力。转向盘在中间位置的转向器角传动比不宜过小。过小则在汽车高速直线行驶时,对转向盘转角过分敏感和使反冲效应加大,使驾驶员精确控制转向轮的运动有困难。直行位置的转向器角传动比不宜低于1516。3齿轮齿条式式转向器设计计算3.1 参数选择由汽车类型齿轮齿条式转向器的齿轮模数为:m=3mm,齿数为z=7,压力角为=20,螺旋角为14。齿条模数:m=3mm,齿数为 z=21,压力角=20,螺旋角为14。3.2齿轮齿条式转向器的设计与计算3.2.1 转向系计算载荷的确定为了保证行驶安全,组成转向系的各零件应有足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。精确地计算出这些力是困难的。为此用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩MR(Nmm)。表3-1 原地转向阻力矩MR的计算Table 3-1 steering resistance moment calculation of MR设计计算和说明计算结果式中 f轮胎和路面间的滑动摩擦因数;转向轴负荷,单位为N;P轮胎气压,单位为。f=0.7=10902.5Np=0.179=627826.2作用在转向盘上的手力Fh为:表3-2 转向盘手力Fh的计算Table 3-2 steering efforts Fh calculation设计计算和说明计算结果 式中 转向摇臂长, 单位为mm;原地转向阻力矩, 单位为Nmm转向节臂长, 单位为mm;为转向盘直径,单位为mm;Iw转向器角传动比;+转向器正效率。因齿轮齿条式转向传动机构无转向摇臂和转向节臂,故、不代入数值。=627826.2=380mmiw=15=90%=244.8N对给定的汽车,用上式计算出来的作用力是最大值。因此,可以用此值作为计算载荷。梯形臂长度的计算:表3-3 梯形臂长度L2的计算Table 3-3 trapezoid arm length L2 is calculated设计计算和说明计算结果轮辋直径= 15in=1525.4=381mm梯形臂长度 =0.8/2=3810.8/2=152.4mm,取=150mm=150mm轮胎直径的计算RT:表3-4 轮胎直径RT的计算Table 3-4 tire diameter RT calculation设计计算和说明计算结果=381+0.55205=493.75mm 取=500mm=500mm转向横拉杆直径的确定:表3-5 转向横拉杆直径的计算Table 3-5 steering cross rod diameter calculation设计计算和说明计算结果=;取=18mm初步估算主动齿轮轴的直径:表3-6 主动齿轮轴的计算Table 3-6 driving gear shaft calculation设计计算和说明计算结果=140MPa取=16mm3.2.2 齿轮齿条式转向器的设计1. EPS系统齿轮齿条转向器的主要元件1) 齿条 齿条是在金属壳体内来回滑动的,加工有齿形的金属条。转向器壳体是安装在前横梁或前围板的固定位置上的。齿条代替梯形转向杆系的摇杆和转向摇臂,并保证转向横拉杆在适当的高度以使他们与悬架下摆臂平行。齿条可以比作是梯形转向杆系的转向直拉杆。导向座将齿条支持在转向器壳体上。齿条的横向运动拉动或推动转向横拉杆,使前轮转向(图3.3-1)。图3.3-1 齿条Figure 3.3-1 rack表3-7 齿条的尺寸设计参数Table 3-7 rack size design parameters序号项目符号尺寸参数()1总长7672直径303齿数214法向模数32) 齿轮 齿轮是一只切有齿形的轴。它安装在转向器壳体上并使其齿与齿条上的齿相啮合。齿轮齿条上的齿可以是直齿也可以是斜齿。齿轮轴上端与转向柱内的转向轴相连。因此,转向盘的旋转使齿条横向移动以操纵前轮。齿轮轴由安装在转向器壳体上的球轴承支承。斜齿的弯曲增加了一对啮合齿轮参与啮合的齿数。相对直齿而言,斜齿的运转趋于平稳,并能传递更大的动力。表3-8 齿轮轴的尺寸设计参数Table 3-8 gear shaft size design parameters序号项目符号尺寸参数(mm)1总长1302齿宽553齿数74法向模数35螺旋角146螺旋方向左旋3) 转向横拉杆及其端部 转向横拉杆与梯形转向杆系的相似。球头销通过螺纹与齿条连接。当这些球头销依制造厂的规范拧紧时,在球头销上就作用了一个预载荷。防尘套夹在转向器两侧的壳体和转向横拉杆上,这些防尘套阻止杂物进入球销及齿条中。转向横拉杆端部与外端用螺纹联接。这些端部与梯形转向杆系的相似。侧面螺母将横拉杆外端与横拉杆锁紧(见图3.3-2)。1- 横拉杆 2-锁紧螺母3-外接头壳体 4-球头销 5-六角开槽螺母 6-球碗 7-端盖 8-梯形臂 9-开口销注:转向反馈是由前轮遇到不平路面而引起的转向盘的运动。图3.3-2 转向横拉杆外接头Figure 3.3-2 steering tie rod joints表3-9 转向横拉杆及接头的尺寸设计参数Table 3-9 steering cross rod and the size of the connector design parameters序号项目符号尺寸参数()1横拉杆总长239.522横拉杆直径153螺纹长度604外接头总长1205球头销总长626球头销螺纹公称直径M1017外接头螺纹公称直径M121.58内接头总长65.39内接头螺纹公称直径M161.54) 齿条调整 一个齿条导向座安装在齿条光滑的一面。齿条导向座1和与壳体螺纹连接的调节螺塞3之间连有一个弹簧2。此调节螺塞由锁紧螺母固定4。齿条导向座的调节使齿轮、齿条间有一定预紧力,此预紧力会影响转向冲击、噪声及反馈(见图3.3-3)。图3.2-3 齿条间隙调整装置Figure 3.2-3 rack clearance adjusting device表3-10 齿条调整装置的尺寸设计参数Table 3-10 rack adjusting device size design parameters序号项目符号尺寸参数(mm)1导向座外径402导向座高度293弹簧总圈数6.434弹簧节距7.925弹簧外径296弹簧工作高度34.597螺塞螺纹公称直径M4428螺塞高度289锁止螺塞高度1010转向器壳体总长/高615/146.511转向器壳体内/外径40/562. 转向传动比 当转向盘从锁点向锁点转动,每只前轮大约从其正前方开始转动30,因而前轮从左到右总共转动大约60。若传动比是1:1,转向盘旋转1,前轮将转向1,转向盘向任一方向转动30将使前轮从锁点转向锁点。这种传动比过于小,因为转向盘最轻微的运动将会使车辆突然改变方向。转向角传动比必须使前轮转动同样角度时需要更大的转向盘转角。15:1的传动比较为合理。在这样的传动比下,转向盘每转动15,前轮转向1。为了计算传动比,可将锁点到锁点过程中转向盘转角的度数除以此时转向轮转角的度数。3. EPS系统齿轮齿条转向器的安装 齿轮齿条式转向器可安在前横梁上或发动机后部的前围板上(见图3.3-4)。橡胶隔振套包在转向器外,并固定在横梁上或前围板上。齿轮齿条转向器的正确安装高度,使转向横拉杆和悬架下摆臂可平行安置。齿轮齿条式转向系统中磨擦点的数目减少了,因此这种系统轻便紧凑。大多数承载式车身的前轮驱动汽车用齿轮齿条式转向机构。由于齿条直接连着梯形臂,这种转向机构可提供好的路感。在转向器与支承托架之间装有大的橡胶隔振垫,这些衬垫有助于减少路面的噪声、振动从转向器传到底盘和客舱。齿轮齿条转向器装在前横梁上或前围板上。转向器的正确安装对保证转向横拉杆与悬架下摆臂的平行关系有重要作用。为保持转向器处在正确的位置,在转向器安装的位置处,前围板有所加固。图3.2-4 转向器的安装位置Figure 3.2-4 steering installation position4. 齿轮齿条式转向器的设计要求 齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。齿轮模数取值范围多在23mm之间。主动小齿轮齿数多数在57个齿范围变化,压力角取20,齿轮螺旋角取值范围多为915。齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。变速比的齿条压力角,对现有结构在1235范围内变化。此外,设计时应验算齿轮的抗弯强度和接触强度。主动小齿轮选用16MnCr5或15CrNi6材料制造,而齿条常采用45钢制造。为减轻质量,壳体用铝合金压铸。5. 齿轮轴和齿条的设计计算表3-11 齿轮轴和齿条的设计计算Table 3-11 gear shaft and rack design calculation设计计算和说明计算结果1.选择齿轮材料、热处理方式及计算许用应力(1) 选择材料及热处理方式小齿轮16MnCr5 渗碳淬火,齿面硬度56-62HRC大齿轮 45钢 表面淬火,齿面硬度56-56HRC(2) 确定许用应力a)确定和 b)计算应力循环次数N,确定寿命系数、。 c)计算许用应力取,=应力修正系数=2.初步确定齿轮的基本参数和主要尺寸(1) 选择齿轮类型根据齿轮传动的工作条件,选用斜齿圆柱齿轮与斜齿齿条啮合传动方案(2) 选择齿轮传动精度等级选用7级精度(3) 初选参数初选 =7 =21 =0.8 =0.7 =0.89按当量齿数(4) 初步计算齿轮模数转矩290.70.16=46.51=39168闭式硬齿面传动,按齿根弯曲疲劳强度设计。=2.474(5) 确定载荷系数=1,由,/100=0.000896,=1;对称布置,取=1.06;取=1.3则=111.061.3=1.378(6) 修正法向模数=2.474=2.461mm圆整为标准值,取=33.确定齿轮传动主要参数和几何尺寸(1) 分度圆直径=21.64(2) 齿顶圆直径=21.64+2=21.64+23(1+0)=27.64(3) 齿根圆直径=21.64-2=21.64-231.25=14.14(4) 齿宽=0.821.64=17.312因为相互啮合齿轮的基圆齿距必须相等,即。齿轮法面基圆齿距为齿条法面基圆齿距为取齿条法向模数为=3(5) 齿条齿顶高=3(1+0)=3(6) 齿条齿根高=3(1+0.25-0)=3.75(7) 法面齿距=4.714.校核齿面接触疲劳强度由表7-5,=189.8由图7-15,=2.45取=0.8,=0.985所以 =189.82.450.80.985=1311.285.结构设计和绘制零件图详见零件图斜齿圆柱齿轮与斜齿齿条啮合传动7级精度39168=1.378=3=21.64=27.64=14.14取=20=3=3.75=4.7齿面接触疲劳强度满足要求3.2.3 齿轮齿条转向器转向横拉杆的运动分析图3.3-5 转向横拉杆的运动分析简图Figure 3.3-5 steering cross rod motion analysis diagram当转向盘从锁点向锁点转动,每只前轮大约从其正前方开始转动30,因而前轮从左到右总共转动约60。当转向轮右转30,即梯形臂或转向节由绕圆心转至时,齿条左端点移至的距离为30=150cos30=129.904=150-129.904=20.09630=75 =339.4=339.4-80=259.4=340-259.4=80.6同理计算转向轮左转30,转向节由绕圆心转至时,齿条左端点E移至的距离为=75 =339.4=75+339.4-340=74.4齿轮齿条啮合长度应大于即 =80.6+74.4=160取L=2003.2.4 齿轮齿条传动受力分析若略去齿面间的摩擦力,则作用于节点P的法向力Fn可分解为径向力Fr和分力F,分力F又可分解为圆周力Ft和轴向力Fa。=239168/21.64=3619.96=1357.90=937.83902.561.轴的受力分析(1) 画轴的受力简图。(2) 计算支承反力在垂直面上在水平面上(3) 画弯矩图在水平面上,a-a剖面左侧、右侧在垂直面上,a-a剖面左侧a-a剖面右侧合成弯矩,a-a剖面左侧a-a剖面右侧(4) 画转矩图转矩 =3619.9610.82=39167.972.判断危险剖面显然,a-a截面左侧合成弯矩最大、扭矩为T,该截面左侧可能是危险剖面。3.轴的弯扭合成强度校核由机械设计3查得,=60/100=0.6。a-a截面左侧4.轴的疲劳强度安全系数校核查得, ,;。a-a截面左侧查得;由表查得绝对尺寸系数轴经磨削加工,查得质量系数=1.0。则弯曲应力 应力幅 平均应力 切应力 安全系数查得许用安全系数S=1.31.5,显然SS,故a-a剖面安全。图3.3-6 齿轮轴校核分析图Figure 3.3-6 check analysis of gear shaft3.2.5 间隙调整弹簧的设计计算设计要求:设计一圆柱形压缩螺旋弹簧,载荷平稳,要求=1411N时,10mm,弹簧总的工作次数小于,弹簧中要能宽松地穿过一根直径为18mm的轴;弹簧两端固定;外径,自由高度。(1) 选择材料 由弹簧工作条件可知,对材料无特殊要求,选用C组碳素弹簧钢丝。因弹簧的工作次数小于,载荷性质属类,。(2) 计算弹簧丝直径表3-12 弹簧丝直径的计算Table 3-12 spring wire diameter calculation计算项目计算依据和内容计算结果1) 选择旋绕比2) 估3) 初算弹簧丝直径4) 计算曲度系数5) 计算弹簧丝的许用切应力6) 计算弹簧丝直径取=4按30mm、16mm,取=6=1.404=0.45=0.451700=765=5.150取=4=1.404=765取=5(3) 计算弹簧圈数和弹簧的自由高度表3-13 弹簧圈数和自由高度的计算Table 3-13 coil number and free height calculation计算项目计算依据和内容计算结果1)工作圈数2)总圈数3)节距4)自由高度=4.43各端死圈取1,故,则,取=4.437.92+1.55=42.59=4.43=6.5=7.92=42.59(4) 稳定性验算 高径比 b=H0/D2=42.59/20=2.12950.1d(6) 几何参数和结构尺寸的确定 弹簧外径 D=D2+d=24+5=29mm弹簧内径 D1=D2-d=24-5=19mm(7) 弹簧工作图s=1.25=1.25765=956.25MPa弹簧的极限载荷Flim=3.1452956.25/(841.4)=1670N弹簧的安装载荷Fmin=0.9Fmax=0.91411=1269.9N弹簧刚度 Cs=Gd/(8C3n)=800005/(8434.43)=176.35N/mm安装变形量 min=Fmin/Cs=1269.9/176.35=7.20mm最大变形量 max=Fmax/Cs=1411/176.35=8.00mm极限变形量 lim=Flim/Cs=1670/176.35=9.47mm安装高度 H1=H0-min=42.59-7.20=35.39mm工作高度 H2=H0-max=42.59-8=34.59mm极限高度 H3=H0-lim=42.59-9.47=33.12mm3.2.6 齿轮轴轴承的校核校核轴承,轴承间距75mm,轴承转速n=15r/min,预期寿命Lh=12000h1.初步计算当量动负荷X=0.56,暂选一近似中间值Y=1.5。另查表得fp=1.2P=fp(XFR+YFA)=1.2(0.56705.5+1.5468.9)=1318.12N2.计算轴承应有的基本额定动负荷Cr查表得,ft=1,又=33.初选轴承型号查机械工程及自动化简明设计手册,选择6204轴承,Cr=12.8KN,其基本额定静负荷Cor=6.65KN4.验算并确定轴承型号1) FA/Cor=469/6650=0.071,e为0.27,轴向载荷系数Y应为1.62) 计算当量动载荷Pr=fp(XFR+YFA)=1.2(0.56141143/75+1.6469)=1444N3) 验算6204轴承的寿命Lh= 12000h即高于预期寿命,能满足要求。上轴承选择比下轴承稍大的型号6205,同样满足要求。3.2.7 键的计算p= p=120MPa式中 T传递的转矩,单位为Nmm;d轴的直径,单位为mm;l键的接触长度,单位为mm;K键与轮毂接触高度,Kh/2,单位为mm;p许用挤压应力,单位为MPa。选用A型键 公称尺寸bh=66根据具体情,键的接触长度l应该大于15mm,则L15+6=21mm圆头普通平键(A型)的尺寸参考GB1096-79键和键槽的断面尺寸参考GB1095-794结论通过计算和画图一些尺寸被重新修订,在这次设计中我学到了汽车设计的许多知识,边计算边画图,从开始选择汽车转向器的效率开始,然后设计转向器齿条齿扇机构,经过校核强度,再进行参数调整,进行修改。在设计中,我对一些知识又有了重新认识,系统的学习了转向器部分的知识,但深知自己还欠缺很多知识,在设计中会存在一些毛病,我期待我今后能有机会改进。汽车设计涉及到许多知识,做设计的人必须认真细致地对待,从设计参数出发,深入细节,并能勇于突破创新,敢于修改,乐于改进。这次课程设计使我受益匪浅。参考文献1 林家让主编.汽车构造底盘篇.北京:电子工业出版社,2004.12 陈家瑞主编.汽车构造:下册.北京:人民邮电出版社,2000 3 庄继德.汽车系统工程.北京:机械工业出版社,1997 4 汪卸建主编.汽车底盘简明教学图解.电子工业出版社,20035 周林福主编.汽车底盘构造于维修.北京:人民交通出版社,20026 余志生主编.汽车理论.北京:机械工业出版社,20017 龚微寒主编.汽车现代设计制造.北京:人民交通出版社,19958 巩云鹏主编.机械设计课程设计.沈阳:东北大学出版2002.129 蔡春源主编.机械零件设计手册.北京:冶金工业出版社,199410 郑志祥,刘天一.机械零件.北京:机械工业出版社,199211 许镇宇,朱景梓.机械零件.北京:人民教育出版社,199827
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!