资源描述
摘 要本次设计的是一款履带式搜救机器人基础级载体,设计内容包括设计行走底盘和四自由度手臂以及对机器人的局部受力情况作了具体的分析。设计整体机器人结构。在设计过程中,不断的观察分析其他机器人的结构,吸取前人经验,进行方案比较选定。本次毕业设计的重点在于机器人的研究设计工作,由于机器人整体的设计难度较大,材料和机构精度要求较高,本设计产品还不能作为成熟产品进行加制造,只能形成设计方案。关键字:机器人;履带底盘;机械臂;控制电路AbstractWhat this design was a section of marching fire robot foundation level carrier, the design content walks the chassis including the design and the four degrees-of-freedom arms as well as has made the concrete analysis to robots partial stress situation. Trial manufacturing overall robot structure. In the design trial manufacturing process, the unceasing observation analyzes other robots structure, absorbs the predecessor to experience, carries on the plan quite to designate. And goes down to the factory to process one to carry on the study, brings to completion the processing technique of manufacture, avoids stepping onto only pauses the written design to be separated from the actual manufacture the tortuous path.This graduation projects key point lies in robots trial manufacturing research work, because the robot wholes design difficulty is big, the material and the organization accuracy requirement is high, this trial manufacturing product has not been able to take the mature product to carry on adds the manufacture, can only do for the guidance prototype supplies the reference.Key words: Robot; Caterpillar band chassis; Mechanical arm; Control circuit目 录摘 要IAbstractII绪 论11.1 项目概述11.2 目的及意义11.3 国内外发展概况21.4 主要研究内容5第二章 方案比较与方案选择62.1 行走机构方案比较62.2 手臂机构方案比较82.2.1 蠕动式机械臂82.2.2 沿X、Y、Z坐标轴直线移动机械臂92.2.3 仿人类手臂式机械臂92.3 机械手的设计102.3.1 机械手主要组成:102.3.2 手部总体确定:102.3.3 手指式手部的类型102.3.4 手部要求:112.3.5 设计时应注意的问题112.3.6 手指夹紧力的计算112.4 驱动力的计算122.5 手臂的设计122.5.1 设计时注意的问题122.5.2 动力的计算13第三章 整体机构设计143.1 爬楼梯的力学原理143.2 回转盘机143.2.1构设计机电动机选择143.3 履带驱动轮机构设计机电动机选择153.4部分校核 主要参数计算方法及强度校核163.4.1轮齿传动163.4.2蜗杆传动193.4.3螺纹连接263.5本章小结31第四章 控制电路及控制器设计334.1控制电路设计334.2 开关元件选用344.3 控制器设计344.4 本章小结35第五章 设计总结37参考文献38致 谢39附录一:英文原文39附录二:中文翻译5363绪 论1.1 项目概述本文介绍的是一种履带式搜救机器人设计, 结构简单、制造方便、性能可靠、成本低廉。履带式行走机构, 使机器人具有更出色的越障能力。两条履带均设置有正反转,且可无级调速,使机器人行走、转弯更加灵活。整机共七个自由度,可实现物体的夹持、搬运、码放。在消防领域,此机器人可在加装声像传输设备等辅助设备的情况下,完成火场侦察、勘测、救援、灭火等任务。论文在这方面具有一定意义。1.2 目的及意义本题目研制开发一种制造简单,使用方便的搜救机器人。中国是一个自然灾害和社会事故多发的国家,煤矿事故、泥石流、台风时有发生。这些灾难发生后现场环境具有复杂性、未知性及潜在的二次伤害(比如煤矿的二次爆炸、建筑物的二次坍塌等)等特点,给救援队员的生命安全带来了很大隐患。因此有必要研制一种能在第一时间代替搜救队员深入到这种危险灾难环境并探测现场有用信息的移动机器人,为下一步营救行动的计划、决策提供可靠依据。 搜救机器人往往需要在高温、强热辐射、浓烟、地形复杂、障碍物多、化学腐蚀、易燃易爆等恶劣环境中进行火场侦察,化学危险品探测、灭火、冷却、洗消、破拆、救人、启闭阀门、搬移物品、堵漏等作业,因此,作为某种特定功能的消防机器人应该具备以下某项或几项行走和自卫功能: a. 登爬坡、登梯及障碍物跨越功能;b. 耐高温和抗热辐射功能;c. 防雨淋功能;d. 防爆(隔爆)功能; e. 防化学腐蚀功能; f. 防电磁干扰功能;g. 遥控功能等。 1.3 国内外发展概况 图1.1救援机器人 图1.2灭火机器人 美国是机器人的诞生地,早在1962年就研制出世界上第一台工业机器人,比起号称机器人王国的日本起步至少要早五六年。经过30多年的发展,美国现已成为世界上的机器人强国之一,基础雄厚,技术先进。综观它的发展史,道路是曲折的,不平坦的。由于美国政府从60年代到70年代中的十几年期间,并没有把工业机器人列入重点发展项目,只是在几所大学和少数公司开展了一些研究工作。对于企业来说,在只看到眼前利益,政府又无财政支持的情况下,宁愿错过良机,固守在使用刚性自动化装置上,也不愿冒着风险,去应用或制造机器人。加上,当时美国失业率高达665,政府担心发展机器人会造成更多人失业,因此不予投资,也不组织研制机器人,这不能不说是美国政府的战略决策错误。70年代后期,美国政府和企业界虽有所重视,但在技术路线上仍把重点放在研究机器人软件及军事、宇宙、海洋、核工程等特殊领域的高级机器人的开发上,致使日本的工业机器人后来居上,并在工业生产的应用上及机器人制造业上很快超过了美国,产品在国际市场上形成了较强的竞争力。进入80年代之后,美国才感到形势紧迫,政府和企业界才对机器人真正重视起来,政策上也有所体现,一方面鼓励工业界发展和应用机器人,另一方面制订计划、提高投资,增加机器人的研究经费,把机器人看成美国再次工业化的特征,使美国的机器人迅速发展。80年代中后期,随着各大厂家应用机器人的技术日臻成熟,第一代机器人的技术性能越来越满足不了实际需要,美国开始生产带有视觉、力觉的第二代机器人,并很快占领了美国60的机器人市场。尽管美国在机器人发展史上走过一条重视理论研究,忽视应用开发研究的曲折道路,但是美国的机器人技术在国际上仍一直处于领先地位。其技术全面、先进,适应性也很强。具体表现在:性能可靠,功能全面,精确度高;机器人语言研究发展较快,语言类型多、应用广,水平高居世界之首;智能技术发展快,其视觉、触觉等人工智能技术已在航天、汽车工业中广泛应用;高智能、高难度的军用机器人、太空机器人等发展迅速,主要用于扫雷、布雷、侦察、站岗及太空探测方面 。英国早在1966年,美国Unimation公司的尤尼曼特机器人和AMF公司的沃莎特兰机器人就已经率先进入英国市场。1967年英国的两家大机械公司还特地为美国这两家机器人公司在英国推销机器人。接着,英国 Hall Automation公司研制出自己的机器人RAMP。70年代初期,由于英国政府科学研究委员会颁布了否定人工智能和机器人的Lighthall报告,对工业机器人实行了限制发展的严厉措施,因而机器人工业一蹶不振,在西欧差不多居于末位。 但是,国际上机器人蓬勃发展的形势很快使英政府意识到:机器人技术的落后,导致其商品在国际市场上的竞争力大为下降。于是,从70年代末开始,英国政府转而采取支持态度,推行并实施了一系列支持机器人发展的政策和措施,如广泛宣传使用机器人的重要性、在财政上给购买机器人企业以补贴、积极促进机器人研究单位与企业联合等,使英国机器人开始了在生产领域广泛应用及大力研制的兴盛时期日本在60年代末正处于经济高度发展时期,年增长率达11。第二次世界大战后,日本的劳动力本来就紧张,而高速度的经济发展更加剧了劳动力严重不足的困难。为此,日本在1967年由川崎重工业公司从美国Unimation公司引进机器人及其技术,建立起生产车间,并于1968年试制出第一台川崎的“尤尼曼特”机器人。正是由于日本当时劳动力显著不足,机器人在企业里受到了“救世主”般的欢迎。日本政府一方面在经济上采取了积极的扶植政策,鼓励发展和推广应用机器人,从而更进一步激发了企业家从事机器人产业的积极性。尤其是政府对中、小企业的一系列经济优惠政策,如由政府银行提供优惠的低息资金,鼓励集资成立“机器人长期租赁公司”,公司出资购入机器人后长期租给用户,使用者每月只需付较低廉的租金,大大减轻了企业购入机器人所需的资金负担;政府把由计算机控制的示教再现型机器人作为特别折扣优待产品,企业除享受新设备通常的40%折扣优待外,还可再享受 13的价格补贴。另一方面,国家出资对小企业进行应用机器人的专门知识和技术指导等等。这一系列扶植政策,使日本机器人产业迅速发展起来,经过短短的十几年,到80年代中期,已一跃而为“机器人王国”,其机器人的产量和安装的台数在国际上跃居首位。按照日本产业机器人工业会常务理事米本完二的说法:“日本机器人的发展经过了60年代的摇篮期,70年代的实用期,到80年代进人普及提高期。”并正式把1980年定为“产业机器人的普及元年”,开始在各个领域内广泛推广使用机器人。日本政府和企业充分信任机器人,大胆使用机器人。机器人也没有辜负人们的期望,它在解决劳动力不足、提高生产率、改进产品质量和降低生产成本方面,发挥着越来越显著的作用,成为日本保持经济增长速度和产品竞争能力的一支不可缺少的队伍。日本在汽车、电子行业大量使用机器人生产,使日本汽车及电子产品产量猛增,质量日益提高,而制造成本则大为降低。从而使日本生产的汽车能够以价廉的绝对优势进军号称“汽车王国”的美国市场,并且向机器人诞生国出口日本产的实用型机器人。此时,日本价廉物美的家用电器产品也充斥了美国市场这使“山姆大叔”后悔不已。日本由于制造、使用机器人,增大了国力,获得了巨大的好处。法国不仅在机器人拥有量上居于世界前列,而且在机器人应用水平和应用范围上处于世界先进水平。这主要归功于法国政府一开始就比较重视机器人技术,特别是把重点放在开展机器人的应用研究上。法国机器人的发展比较顺利,主要原因是通过政府大力支持的研究计划,建立起一个完整的科学技术体系。即由政府组织一些机器人基础技术方面的研究项目,而由工业界支持开展应用和开发方面的工作,两者相辅相成,使机器人在法国企业界很快发展和普及。德国德国工业机器人的总数占世界第三位,仅次于日本和美国。这里所说的德国,主要指的是原联邦德国。它比英国和瑞典引进机器人大约晚了五六年。其所以如此,是因为德国的机器人工业一起步,就遇到了国内经济不景气。但是德国的社会环境却是有利于机器人工业发展的。因为战争,导致劳动力短缺,以及国民技术水平高,都是实现使用机器人的有利条件。到了70年代中后期,政府采用行政手段为机器人的推广开辟道路;在改善劳动条件计划中规定,对于一些有危险、有毒、有害的工作岗位,必须以机器人来代替普通人的劳动。这个计划为机器人的应用开拓了广泛的市场,并推动了工业机器人技术的发展。日尔曼民族是一个重实际的民族,他们始终坚持技术应用和社会需求相结合的原则。除了像大多数国家一样,将机器人主要应用在汽车工业之外,突出的一点是德国在纺织工业中用现代化生产技术改造原有企业,报废了旧机器,购买了现代化自动设备、电子计算机和机器人,使纺织工业成本下降、质量提高,产品的花色品种更加适销对路。到1984年终于使这一被喻为快完蛋的行业重新振兴起来。与此同时,德国看到了机器人等先进自动化技术对工业生产的作用,提出了1985年以后要向高级的、带感觉的智能型机器人转移的目标。经过近十年的努力,其智能机器人的研究和应用方面在世界上处于公认的领先地位。有人认为,应用机器人只是为了节省劳动力,而我国劳动力资源丰富,发展机器人不一定符合我国国情。这是一种误解。在我国,社会主义制度的优越性决定了机器人能够充分发挥其长处。它不仅能为我国的经济建设带来高度的生产力和巨大的经济效益,而且将为我国的宇宙开发、海洋开发、核能利用等新兴领域的发展做出卓越的贡献。 我国已在“七五”计划中把机器人列人国家重点科研规划内容,拨巨款在沈阳建立了全国第一个机器人研究示范工程,全面展开了机器人基础理论与基础元器件研究。十几年来,相继研制出示教再现型的搬运、点焊、弧焊、喷漆、装配等门类齐全的工业机器人及水下作业、军用和特种机器人。目前,示教再现型机器人技术已基本成熟,并在工厂中推广应用。我国自行生产的机器人喷漆流水线在长春第一汽车厂及东风汽车厂投入运行。1986年3月开始的国家863高科技发展规划已列入研究、开发智能机器人的内容。就目前来看,我们应从生产和应用的角度出发,结合我国国情,加快生产结构简单、成本低廉的实用型机器人和某些特种机器人。1.4 主要研究内容本题目主要研究的内容是设计行走底盘和四自由度手臂,本题目研制开发一种消防机器人基础级载体。对机器人的局部受力情况作了具体的分析。 第二章 方案比较与方案选择2.1 行走机构方案比较机器人在地面上移动的方式通常有三种:车轮式、履带式和步行式。 步行移动方式是模仿人类或动物的行走机理,用腿脚走路,对环境适应性好。根据调查,在地球上近一半的地面不适合于传统的轮式或履带式车辆行走, 但是一般多足动物却能在这些地方行动自如,显然足式与轮式及履带式行走方式相比具有独特的优势. 足式行走对崎岖路面具有很好的适应能力,足式运动方式的立足点是离散的点,可以在可能到达的地面上选择最优的支撑点。但是步行移动方式的智能程度也相对较高。正因如此,步行移动方式在机构和控制上是最复杂的,技术上也还不成熟,不适于在要求灵活和可靠性高的工作环境中。 图2.1步行移动方式机器人车轮式移动是最常见的一种地面行进方式。车轮式移动的优点是:能高速稳定的移动,能量利用效率高,机构和控制简单,而且技术比较成熟。驱动与转弯机构可分以下几种形式:1. 驱动、转向轮一体径向转向,如同前驱动式轿车2. 驱动轮、转向轮分置,如同后驱动式卡车3. 两侧驱动轮异速转弯,如同轮椅前两种驱动转弯形式不单要设计有合理的驱动机构,还要有较好的转向机构,增加了自由度的同时又要考虑为这个自由度提供动力单元,以及转向差速系统,使得整机复杂程度大大提升,机构繁琐,稳定性降低。第三种形式仅用一套差速系统和一组跟踪轮就可实现转向,可是跟踪轮通常采用万向轮,无规则定向,在路面情况复杂下行驶极其不稳定,且在停止和启动时遵循前一运动状态轨迹,缺乏应急灵活性。而其车轮式移动共有的缺点就是对路面要求较高,适于平整硬质路面。越障性能严重缺失。 图2.2车轮式行走机器人履带式实际是一种自己为自己铺路的轮式车辆。它是将环状循环轨道履带卷绕在若干滚轮外,使车轮不直接与地面接触。履带式的的优点是着地面积比车轮式大,所以着地压强小;另外与路面黏着力强,能吸收较小的凸凹不平,适于松软不平的地面。因此,履带式广泛用在各类建筑机械及军用车辆上。并且履带式结构是通过两条履带差速实现转弯。不但可以实现超小半径转弯,还可以实现原地转弯。灵活性极佳。图2.3履带式机器人2.2 手臂机构方案比较对于整体行走机器人载具而言,行走机构只是用来完成大空间内整体移动和工作头部分在平面内大幅度间接调整。其运动轨迹和幅度难以充分满足三维空间运动和精度要求。为了能使工作头部分能够在三维空间触及工作点工作面并且能够精确完成工作任务引入了连接在行走机构与工作头之间的,较行走机构传动更精准、运动更平稳的机械臂机构。机械臂按其运动机理可分为以下三种:2.2.1 蠕动式机械臂这种机械臂源自仿生学中对虫子蠕动的模仿。通过沿径向布置的很多个旋转关节或扭转关节机构的联动来实现工作头空间内多组相邻圆心圆截面上各点工作。这种机械臂绝对是各种机械臂中自由度最高的一类。但因其要求每个旋,扭转关节机构都要求有独立动力,且联动的位移是由多个关节机构非等值分担,这就对动力部分、传动精度、控制精度提出了极高要求。不但设计制造极其困难,通过使用机械控制简单电路控制是极难完成的控制的。所以只出现在高端机器人领域具处于设计试制阶段。对于基础层次机械设计制造这相当于不可完成的任务。图2.4 蠕动式机械臂2.2.2 沿X、Y、Z坐标轴直线移动机械臂在三维立体空间内分别沿X、Y、Z轴做直线运动就可以到达一个立方体内的各个点进行工作,这是一种撒网式的搜罗。在三轴分动时工作头位移轨迹是沿空间内沿X、Y、Z方向线段的连接,当三轴联动时,工作头运动轨迹便是空间内的一条曲线。完成工作动作直接快捷,且只有三个轴线位移,整机运动平稳可靠,精度颇高。所以多用于机床加工中心等机械上,但其机体必须含有沿X、Y、Z轴方向,长度至少等于三轴位移长度一半的三个相连的空间垂直架体。这种就有相对较大的非工作状态机构所占空间和整体体积,但对于行走式机器人载具而言,对体积和自重的限制是极其严格的,要求尽量减小自身负载体积,以适应工作环境。图2.5 沿X、Y、Z坐标轴直线移动机械臂2.2.3 仿人类手臂式机械臂这种结构的手臂有旋转机构、大臂摇动机构、小臂摇动机构和手腕机构四部分组成在同一平面内三个旋转自由度被安装在一个垂直此平面的旋转盘上,手腕、小臂、大笔的须按转是工作头触点在三个自由度连线平面内。形成了一个平面工作区域,通过旋转盘的带动,是这个平面工作区域绕Z轴须按转,形成了一个立体工作空间。这种手臂机构在工作中状态下可以收缩减小空间,传动距离较短,结构可靠性能好,能够出色的完成工作空间内一点到另一点的最有运动轨迹位移。2.3 机械手的设计机械手的手部是用来抓持工件(或工具)的部件。手部抓持工件的迅速、准确和牢靠程度都将直接影响到机械手的工作性能,它是机械手的关键部件之一。2.3.1 机械手主要组成:机械手主要是由执行系统,驱动系统,控制系统三大部分组成。执行部分执行系统是机械手的机械传动结构部分。它包括手、手腕、手臂和机座等部件。驱动系统驱动系统是驱动执行系统的动力装置。驱动系统有液压驱动,气压驱动,电力驱动和机械驱动等方式。控制系统控制系统是支配执行系统按规定程序动作得到电气控制装置。控制系统所控制的因素包括执行系统各部的动作、动作顺序、位置、时间和速度等。2.3.2 手部总体确定:手部是承担抓取功能的机构,由手指传力机构和驱动装置等组成,是机械手的重要组成部分之一。根据被抓起部件的材料,形状,尺寸以及一些特性的不同,此机械手部分为手指式。2.3.3 手指式手部的类型手指式手部是以手指的张开和闭合来实现抓持工件。它对抓取各种形状的工件具有较大的适应性,故应用最广。一般手指式手部具有两指,三指或者多指,后者应用较少。而次此设计手指为两指式手指。 手指式手部按手指的运动形式可分为回转型和平移型。回转型又分为单支点和双支点两种。回转型手部多用于抓持圆柱形工件,平移型用于抓持方形工件。2.3.4 手部要求:1) 手指应具有足够的加紧力。在考虑手指的加紧力时,除考虑工件的重量外,还应考虑工件在传送过程中产生的惯性力和震动等影响,以保证夹持牢靠。2) 各构件要有足够的刚度的强度。3) 构件要简单,修理方便。4) 应尽可能结构紧凑。使之重量轻,动作灵活。2.3.5 设计时应注意的问题)手指应有足够的夹紧力。为使手指牢靠的夹紧工件,除考虑被抓持工件的重力外。还应考虑工件在传送过程中所产生的动载荷。)手指应有一定的开闭范围,其大小不仅与工件尺寸有关,而且须注意手部接近工件的运动路线及方位的影响。)应保证工件在手指内准确定位。)结构尽量紧凑、重量轻,以利于腕部和臂部的结构设计。)根据应用条件考虑通用性。2.3.6 手指夹紧力的计算手指对工件的夹紧力可按下式计算: 123kgf (2.1)式中 1 安全系数(通常取1.52) 2 工作情况系数,主要考虑惯性力的影响,可按 2a/g估算a为机械手在搬运工件过程的加速度 m/sg为重力加速度m/s 3方位系数 被抓持工件的重量 kg 、2.4 驱动力的计算 手指夹持工件所需要驱动力的大小,在同一夹紧力的条件下,随所采用的传动结构的不同而异。但其计算方法都是按照具体的传动机构进行力的分析,根据力系平衡原理来进行的。 P1=Na/bsin/sin(+a) 根据受力的平衡条件可得驱动力为: P=2P1sina=2Na/bsinsina/sin(+a) (2.2)2.5 手臂的设计手臂部是机械手的主要执行部件,其作用是支承手部。手部在空间的活动范围主要取决于臂部的运动形式。2.5.1 设计时注意的问题手臂部的运动和结构形式对机械手的工作性能有着较大的影响。设计时应注意下列几点:(1)刚度要好 要合理选择臂部的截面形状和轮廓尺寸。实践证明,空心杆比实心杆刚度大得多。常用钢管作臂部和导向杆,用工字钢和槽钢作支承板,以保证有足够的刚度。(2)偏重力矩要小 偏重力矩是指臂部的总重量对其支承或回转轴所产生的力矩。它对臂部的升降运动和转动,均将产生影响,设计时应使臂部各部分的质量分布合理,以减少其偏重力矩。(3)重量要轻惯量要小 由于机械手在高速情况下经常起停和换向,为了减少在运动状态变化时所产生的冲击,必须采取有效的缓冲装置外,力求结构紧凑,重量轻,以减少惯性力。(4)导向性要好 为了防止臂部在直线移动中沿运动轴线发生相对转动,以保证手部的正确方向和准确定位,必须有导向装置。其结构应根据臂部的安装形式、抓取重量和运动行程等因素来确定。2.5.2 动力的计算1)手臂水平伸缩时: P驱=P摩+P惯(公斤力)式中 P驱驱动力 P摩摩擦力(包括手臂伸缩导轨间、导向杆间和密封装置处的摩擦阻力,公斤力) P惯手臂在启动过程中的惯性力,其大小可按下式近似计算: P惯=G伸V/g t(公斤力)式中 G伸随同手臂伸缩部件总重量(公斤力) G重力加速度(m/s) V手臂的工作速度(m/s) T起动过程所用时间(秒) 2)手臂升降时: P驱=P摩+P惯+G升(公斤力)式中 G升随同手臂升降部件总重量(公斤力) 3)手臂水平左右摆动时: M驱= M摩+M惯(公斤力米)式中 M驱驱动力矩(公斤力米) M摩摩擦力矩(包括转轴支撑处和密封装置处的摩擦阻力矩, 公斤力米) M惯手臂在起动过程中的惯性力矩.可按下式计算: M惯=Jw/t(公斤力米)式中 J随同手臂摆动部件对转轴的转动惯量 W手臂摆动的角速度(1/秒)第三章 整体机构设计3.1 爬楼梯的力学原理基于遥控电动小车爬越一定高台的原理,对具有摆臂结构的移动车体爬越楼梯进行了相关的力学分析.整个爬越过程可以分成两个阶段:第一阶段,先将两侧摆臂搭在台阶上,然后同时驱动三台电机,使车体在行走机构和摆动机构的共同作用下,顺利地爬到第二个台阶,此时车体实现了地面、第一、二台阶处的三点接触;第二个阶段,小车只需在行走机构的作用下如同上坡地一样缓缓地向上爬.由此可以看出,只要保证行走机构在结构设计上至少能够同时与两个台阶点接触,就能实现第二阶段运行的平稳性和可靠性,故在此不再赘述,仅对第一阶段进行分析.假设台阶是光滑的(这样便于分析讨论),摆臂的重心处于摆臂中心轴线上距大轮点1/3处,整个车体的重心位于车体几何中心处.由于摆臂末端的小带轮呈圆弧形而且它与台阶之间为线接触,为避免发生打滑,应至少保证小带轮的几何中心处于接触点的正上方。在爬越高度为H0的台阶时,即前轮刚离开地面的瞬间,整车和摆臂的受力情况。3.2 回转盘机3.2.1构设计机电动机选择由于整个臂部机构和预设负载重量(约9 kg)较大,且重心极限位置旋转半径(约400mm)较大,所以在转盘设计时必须考虑机构较大的旋转惯性力。所以选带传动方式。带传动传动平稳能缓冲吸振,且可大传动臂设计,将从动带轮设计较大半径,以减小传动带拉力,正符合此机构要求。从动大带轮直径d1为50mm设计,转速n1应尽量小,设在0.1转/秒主动带轮选用成套机构,带轮直径d0为10mm则主动带轮转速n0 为n0 / n1 = d1 / d0即图. 传动方案简图n0 = n1 * (d1 / d0 ) = 0.1 * (50 / 10) = 0.5转/秒物品清单中,符合此要求的电动机只有一种。即12ZYJ-60J系列永磁直流减速电机转速30转/分钟功率10W验算证明满足机构力学要求。3.3 履带驱动轮机构设计机电动机选择 驱动轮设计减速电机输出轴直接安装链轮。链轮上加挂自制履带。设计履带摩擦面到链轮回转中心的旋转半径为25mm设计直线行走最大速度为150mm/s则驱动电功转速为6转/秒预设整机与负载总重30 kg最大爬坡角为45,则履带最大拉力F为F = F重 / sin= 30 * 10 / 0.707 = 404.328N取高整值为430N,两条履带驱动,单根受力为F单 = F / 2 = 430 / 2= 150N直线行走最大速度V为150mm/s单根履带受力F为150N则功率为P = F * V= 150 * 150 * 0.001= 22.5W考虑技术要求及功率损失选用62KTYJ系列单相可逆永磁同步电机转速36转/分钟功率30W3.4部分校核 主要参数计算方法及强度校核3.4.1轮齿传动一. 轮齿的受力分析 1.直齿 将作用在轮齿上的法向力Fn分解为一对互相垂直的力,即径向力Fr和圆周力Ft,大小分别为: (3.1)方向:Fr指向各自的轴线;Ft在主动轮上与转向相反,从动轴上与转向相同。 2.斜齿将作用在轮齿上的法向力Fn分解为三个互相垂直的力,即径向力Fr、圆周力Ft和轴向力Fa大小分别为: (3.2)方向:Fr指向各自的轴线;Ft在主动轮上与转向相反,从动轴上与转向相同。Fa自齿的工作面指向齿体。二.轮齿的计算载荷FtcFtc=KFt1. 齿轮弯曲疲劳强度计算 1.直齿 强度校核公式: (3.3) 设计公式: 2.斜齿 强度校核公式: (3.4) 设计公式: (3.5)开式齿轮传动m应加大1015,不需疲劳强度校核。2. 齿面接触疲劳强度计算 1.直齿强度校核公式: (3.6)设计公式: 2.斜齿强度校核公式: (3.8)设计公式:3. 齿轮的许用应力一.接触疲劳许用应力 (3.9)二.弯曲疲劳许用应力 (3.10)3.4.2蜗杆传动1. 蜗杆传动的参数和几何尺寸1. 普通圆柱蜗杆传动的主要参数图3.1 普通圆柱蜗杆传动(1)模数和压力角蜗杆和蜗轮啮合的中间平面上,蜗杆的轴面模数、压力角应与蜗轮的端面模数、压力角相等,即(2)蜗杆的分度圆直径蜗杆的分度圆直径,为模数,为蜗杆的直径系数,已有标准值,且与模数相匹配。(3)蜗杆头数蜗杆头数通常取为1、2、4、6,也可根据要求的传动比和效率来选定。(4)导程角 (3.11) (5)传动比和齿数比传动比,齿数比,(、为蜗杆和蜗轮的转速,单位为,为蜗轮的齿数)当蜗杆主动时,有(6)蜗轮齿数蜗轮齿数主要根据传动比来确定,通常规定大于28,一般不大于80。(7)蜗杆传动的标准中心距 (3.12)变位蜗杆的中心距为 (3.13)2. 蜗杆传动的几何尺寸计算普通圆柱蜗杆传动主要参数的基本公式中心距 (标准传动中心距) (变位后实际中心距) 蜗杆轴向齿距蜗杆导程蜗杆分度圆直径蜗杆导程角蜗轮变位系数(为变位后齿轮的实际齿数)如图3.2 所示图3.2 普通圆柱蜗杆传动的基本几何尺寸3. 普通圆柱蜗杆承载能力的计算1. 蜗杆传动的失效形式和设计准则蜗杆传动的失效形式有点蚀、齿根折断、齿面胶合及过度磨损等。由于蜗杆螺旋齿部分的强度总是高于蜗轮轮齿的强度,所以失效经常发生在蜗轮轮齿上。因此,一般只对蜗轮轮齿进行承载能力计算。在开式传动中,以保证齿根弯曲疲劳强度作为开式传动的主要设计准则。在闭式传动中,通常是按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。另外,闭式蜗杆传动散热较为困难,还应作热平衡核算。蜗杆一般是用碳钢或合金钢制成。常用的蜗轮材料为铸造锡青铜、铸造铝铁青铜及灰铸铁等。2. 蜗杆传动的受力分析是垂直指向节点的正压力,可分解为圆周力、径向力和轴向力,三力互相垂直。在蜗轮、蜗杆间,与、与和与三对力大小相等、方向相反。在进行蜗杆传动的受力分析时,首先判别蜗杆的螺旋方向是右旋还是左旋,其次按左、右手法则确定作用于蜗杆上轴向力的方向,这样就可以定出作用于蜗轮上的圆周力的方向和蜗轮的转动方向。图3.3 蜗杆传动的受力分析各力计算公式为 (3.14) (3.15) 4. 蜗杆传动的强度计算(1)蜗轮齿根弯曲疲劳强度计算在蜗杆传动时,蜗杆传动强度计算即为蜗轮齿的强度计算。因蜗轮的齿形比较复杂,精确计算比较困难,故常把蜗轮近似地看成斜齿圆柱齿轮计算,其齿根弯曲疲劳强度计算公式为 (3.16)设计公式为 式中:蜗轮的齿形系数; 螺旋角影响系数; 载荷系数,。 (2)蜗轮齿面接触疲劳强度计算蜗轮齿面接触强度计算也和斜齿圆柱齿轮相似,其公式为 (3.17) (3.18) 式中:材料的弹性影响系数,; 蜗杆传动的接触线长度和曲率半径对接触强度的影响系数,简称接触系数。5. 普通圆柱蜗杆传动的效率、润滑和热平衡计算 1. 蜗杆传动的效率闭式蜗杆传动总效率为 式中、分别为啮合摩擦损耗、轴承摩擦损耗及溅油损耗时的效率。总效率主要取决于。当蜗杆主动时,则 (3.19)式中:普通圆柱蜗杆分度圆柱上的导程角; 当量摩擦角,其值可根据滑动速度选取。 由图3.4得(单位为) 式中:蜗杆分度圆的圆周速度,单位为; 蜗杆分度圆直径,单位为;蜗杆的转速,单位为。一般取,则总效率为 图3.4 蜗杆传动的滑动速度2、蜗杆传动的润滑当润滑不当时,会显著降低蜗杆传动的效率,并会产生磨损和胶合破坏,所以常采用矿物油进行良好的润滑,为了提高抗胶合能力,还常在润滑油中加入添加剂。若采用喷油润滑,喷油嘴要对准蜗杆啮入端,当蜗杆正转时,两边都要装喷油嘴,并且还要控制油压。对于蜗杆下置式或蜗杆侧置式的传动,浸油深度应为蜗杆的一个齿高;当为蜗杆上置式时,浸油深度约为蜗轮外径的。3、蜗杆传动的热平衡计算蜗杆传动工作时发热量大,如果不及时散去产生的热量,会使润滑油稀释,从而增大摩擦损失,甚至发生胶合。所以很有必要进行热平衡计算。产生的热流量(单位为)为式中为蜗杆传递的功率,单位为。从箱体外壁散发到周围空气中去的热流量为,有热平衡条件可得工作条件下的油温 式中:箱体的表面传热系数; 表面面积,单位为; 油的工作温度,一般限制在; 周围空气的温度,常温情况可取为; 在或有效的散热面积不足时,则必须采取措施,以提高散热能力。通常采取:a)加散热片以增大散热面积;b)在蜗杆轴端加装风扇以加速空气的流通;c)在传动箱内装循环冷却管路;d)在箱体油地内加装蛇形散热管,利用循环水进行冷却。3.4.3螺纹连接1. 螺纹参数 大径d;小径d1;中径d2;螺距t;导程s;螺旋线数n;螺纹升角;牙型角。2. 分类按旋向:左旋;右旋。按母体:圆柱螺纹;圆锥螺纹。按螺旋线的头数:单头;多头。按牙型:三角形;梯形;矩形;锯齿形。3. 螺旋副的受力分析、效率和自锁一.牙型角=0时1.受力分析 螺母和螺杆的相对运动可用滑块在斜面上运动分析,拧紧螺母时,即滑块沿斜面匀速向上移动。此时,作用在滑块上的力有:外载荷Q、由拧紧力矩T引起的水平力P、斜面对滑块的法向反力N、滑块运动时产生的摩擦阻力fN,现将法向反力N和摩擦阻力fN合成一总的反力R,则作用在滑块上的Q、P、R平衡,由力的封闭三角形知,P=Qtg(+) (3.20)2.传动效率3.自锁 当外力矩撤掉以后,作用在滑块上的力Q沿斜面和与斜面垂直的面的两个分力F1=Qsin,F2=Qcos,若滑块不下滑,则必须满足F1F2f,即Qsin fQcostgf=tg二.牙型角0时 牙型角=0时,滑块法向反力N=Q;牙型角0时,滑块法向反力;牙型角=0时摩擦力F=Qf; 牙型角0时摩擦力F=f=Qfv牙型角0螺旋副的受力可以看作是摩擦系数为当量摩擦系数fv的矩形螺纹,从而使问题简化。因此,牙型角0时螺旋副的力、效率及自锁条件为:P=Qtg(+v)= v2. 螺栓连接的基本类型及螺纹连接件一.螺纹连接的基本类型 1.螺栓连接:普通螺栓连接和铰制孔螺栓连接。 2.双头螺柱连接 3.螺钉连接 4.紧定螺钉连接二.螺纹连接件 1.螺栓 2.双头螺柱 3.紧定螺钉 4.螺母 5.垫圈3. 螺纹连接的拧紧和防松一.螺纹连接的拧紧 螺纹连接拧紧的力矩 T=T1+T2=ktFd式中:T1螺纹力矩T2螺母和被连接件支承表面的摩擦力矩Kt拧紧力矩系数,在(0.10.3)之间F预紧力二.螺纹连接的防松4. 螺纹连接的受力分析螺栓连接的特点:成组使用,而且组中螺栓通常是同材料、同直径、同长度.受力分析的目的:找出螺栓连接中受力最大的螺栓。一.受轴向力Q作用的螺栓组连接 若螺栓组中螺栓的个数为Z,则单个螺栓受到的轴向外载荷F为: F=二.受横向力R作用的螺栓组连接 1.普通螺栓连接 F= 2.铰制孔螺栓连接 三.受旋转力矩T作用的螺栓组连接 1.普通螺栓连接F= 2.铰制孔螺栓连接四.受转翻(倾覆)力矩M作用的螺栓组连接 (3.21)5. 螺栓连接的强度计算目的:校核螺栓强度,选择螺栓尺寸。一.受拉螺栓连接(一).松螺栓连接定义:装配时螺栓不用拧紧,在承受外载荷之前螺栓不受力。若螺栓连接受轴向外载荷F作用时,螺栓受拉,此时,螺栓的强度条件和设计公式与材料力学受拉件相同,即强度条件:设计公式: (3.22)(二).紧螺栓连接定义:螺栓连接在装配时已经拧紧,所以,在外载荷作用之前,螺栓已受到预紧力F的拉伸和拧紧力矩T的扭转,即作用在螺栓上的应力有F引起的拉应力和T引起的剪应力,螺栓在承受外载荷之前已处于复杂应力状态。1.螺栓仅受预紧力F的连接按照材料力学的第四强度理论,将作用在螺栓上的拉应力和剪应力合成,且带入=0.5,则即:强度条件设计公式2.紧螺栓受轴向外载荷作用此时,由变形协调条件可知,作用在单个螺栓上总的轴向载荷F为: F=F1+F残 强度条件 设计公式 式中,当外载荷为一集中力F时,Z为螺栓组中螺栓的个数;当外载荷为一倾翻力矩M时,F残见表14-8。3.紧螺栓受横向外载荷作用a.普通螺栓连接强度条件: (3.23)设计公式:式中,当外载荷为一集中力R时,F=,当外载荷为一旋转力矩时,F=b.铰制孔螺栓连接强度条件:式中,当外载荷为一集中力时,;当外载荷为一旋转力矩T时 设计时的简便方法:令则 设计时根据AS数值查表可确定螺栓尺寸。3.5本章小结机械产品设计除了应满足产品使用性能外,还应满足制造工艺要求,否则就有可能影响产品生产效率和生产成本,严重时甚至无法生产。一个工艺性评价低劣的产品,在激烈竞争的市场经济环境中是站不住脚的。一个好的产品设计必须同时是一个好的工艺师。机械产品设计的工艺性评价实际是评价所设计的产品在满足使用要求的前提下,制造、维修可行性和经济性。这里所说的经济性是一个含意宽广的术语,它应是材料消耗要少、制造劳动要少、生产效率要高和生产成本要低的综合。评价机械产品设计的机械加工工艺性可以从以下几个方面进行评价:1. 零件结构要素必须符合标准规定2. 尽量采用标准件和普通件3. 在满足产品使用性能的条件下,零件图上标注的尺寸精度等级好表面粗糙度要求应取经济值4. 尽量选用切削加工性好的材料5. 有便于装夹的定位基准和夹紧表面6. 保证能以较高的生产率加工7. 保证刀具正常工作8. 加工时工件应有足够的刚性机械产品设计的装配工艺性评价1. 机器结构应能划分成几个独立的装配单元2. 尽量减少装配过程中的修配劳动量和机械加工劳动量3. 机器结构应便于装配和拆卸机械产品设计的最初环节,是先要针对该产品的主要功能提出一些原理性的构思。这种针对主要功能的原理性设计,可以简称为“功能原理设计”。功能原理设计的重点在于提出创新构思,是思维尽量“发散”,力求提出较多的解法供比较选优。对构件的具体结构、材料和制造工艺等则不一定要有成熟的考虑,因此常只需用简图或示意图来表示所构思的内容。功能原理设计是对产品的成败起决定性作用的工作。第四章 控制电路及控制器设计4.1控制电路设计控制电路的设计,取决于机器人的控制机理。大部分的机器人采用无线可编程控制。这样的控制形式使机器人更加智能化。通过利用红外线电磁波等无线数据传输设备,机器人的工作空间大小扩展,而且通过编程器的使用,使机器人有了一定的工作自主能力。但是这样控制电路过于精密复杂。在本次设计中,主要任务是机械结构的设计和制造。对于这种简单机器人载具的设计试制工作,控制电路不宜过于复杂,所以选择了简单的开关控制和变阻器调速。在这个电路中每个电动机都必须有三个状态,即正转、反转及停机。且在正反转时均可调速。它们都是独立工作,且可同时运转,这就要求每个直流电机都必须配备一套独立的换向开关和调速变阻器。在工作过程中想要避免同一电机正反转电流同时供电,如果采用两个单独开关,在手动控制过程中,难免会出现一种工作状态并未逝电,就启动了另一种工作状态,这样就相当于电源反接,避免此种情况的发生更好实现控制器的人性化设计,电路中运用了中间断开的双向触点多极开关,在总电路中设置总开关,是整个电路的启停更方便,处理紧急情况时关闭所有电动机电源更快捷。总电路和各个电机分电路中可以并联入小灯泡,以起到电源指示作用。图4.1 基本控制电路图在各个电动机上并联入两组发光二极管与适值电阻的串联电路(两组串联电路中发光二极管分别采用正接与反接),利用发光二极管的单向导通特性,来指示电动机的正反转。图4.2 加装指示电路的控制电路4.2 开关元件选用电路中的主要负载部分及电源电动机已经确定,下面对开关、变阻器选用指示电路部分的发光二极管电阻进行选择。开关、变阻器这类元器件都有外露的受控部分,必须考虑手动的合理性和开关自身的可安装性,由于在我们现有加工能力条件下钻圆孔最为容易实现。所以均选用螺纹紧定式元件。换向开关选用ds037-01d 三位两通按钮,总开关选用XN-19按钮,变阻器选用 SA-198旋钮式变阻器,发光二极管选用圆柱头发光二极管。4.3 控制器设计 控制器设计上,为使整个控制过程更加自如方便可靠,更加人性化,所以采用了与整个机械机构同形式布局的方法,开关起停形式与机器人各机构运动方向相同,使得控制更加得心应手。图4. 3 控制器4.4 本章小结在现代化的生产中,生产机械的自动化成都反映了工业生产发展的水平。现代化的生产设备与系统已不再是传统意义上的单纯的机械系统,而是机电一体化的综合系统,电气传动与控制系统已经成为现代生产机械的重要组成部分。机与电、传动与控制已经成为不可分割的整体。所谓电气传动,是指以电动机为原动机驱动生产机械的系统的总称,它的目的是将电能转变为机械能,实现生产机械的启动、停止以及速度调节,完成各种生产工艺要求,保证生产过程的正常进行。在现代工业中,为了实现生产过程自动化要求,机电传动不仅包括拖动生产机械的电动机,而且包含控制电动机的一整套控制系统,也就是说,现代机电传动是和由各种控制元件组成的自动控制系统紧密联系在一起的。虽然在本次设计中最终选
展开阅读全文