资源描述
小学数学课程标准(实验稿)思考题1.义务教育阶段的数学课程,其基本出发点是什么,强调了什么基本出发点:促进学生全面、持续、和谐地发展。强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。2.义务教育阶段的数学课程应突出什么?实现的最终目标是什么?应突出体现基础性、普及性和发展性。最终目标:人人学有价值的数学3.数学有哪些重要作用?是人们生活劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效的描述自然现象和社会现象;为其他科学提供语言、思想和方法,是一切重大技术发展的基础:数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容思想、方法和语言是现代文明的重要组成部分。4.学生的数学学习内容应当是怎样的?要有利于学生的哪些数学活动?应当是现实的、有意义的、富有挑战性的。有利于学生主动进行观察、实验、猜测、验证、推理与交流等数学活动。5.有效的数学学习活动方式应当是怎样的?有效地数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式6.数学教学活动必须建立在什么基础上?师、生的角色各是什么? 建立在学生的认识发展水平和已有的知识经验基础上。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。7.评价的主要目的是什么?要关注什么? 主要目的:为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。关注:要关注学生学习的结果,更要关注他们的学习的过程;要关注学生学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。8.总目标具体化为哪四方面?使用了哪些目标动词来体现哪几方面的要求?各目标动词的含义各是什么具体分为:知识与技能、数学思考、解决问题、情感与态度 动词:了解能从具体示例中,知道或能举例说明对象的关键特征;根据对象的特征,能从具体的情境中辨认出这一对象。理解能描述对象的特征和由来;能明确地阐述对象与有关对象之间的区别和联系。掌握能在理解的基础上,把对象运用到新的情境中灵活运用能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务经历(感受)在特定的数学活动中,获得一些初步的经验体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验探索主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系9.各个学段学习内容中,标准安排了哪四个学习领域?促进学生哪些方面的发展?数感主要表现在哪些方面?空间观念主要表现在哪些方面?学习领域:数与代数 空间与图形 统计和概率 时间与综合应用发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。数感:理解数的意义:能运用多种方法来表示数;能在具体的情境中把握输得相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的能力;能估计运算的结果,并对结果的合理性作出解释。空间观念:能由实物的形状想象出几何图形,由几何图形想象出事物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件作出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。10.推理能力的主要表现各是什么?主要表现:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或者举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑进行讨论与质疑。11.标准在第一、二学段各提出了哪些教学建议和评价建议?第一学段:教学建议:数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。 评价建议:全面了解学生的学习状况,激励学生的学习热情,促进学生的全面发展。既要关注学生知识与技能的理解和掌握,更要关注他们情感和态度的形成和发展;既要关注学生数学学习的结果,更要关注他们在学习过程中的变化和发展。应以过程评价为主,采用鼓励性语言。第二学段:教学建议:要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的环境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动。 评价建议:既要关注学生知识与技能的理解和掌握,更要关注他们情感与态度的形成和发展;既要关注学生数学学习的结果,更要关注他们在学习过程中的变化和发展。评价的手段和形式应多样化,应重视过程评价以定性描述为主采用激励的语言。12.谈谈你对新课标中“不同的人在数学上得到不同的发展”这一基本理念的理解 新课标提出“不同的人在数学上得到不同的发展”这一基本理念,要求我们的教学要面对每一个有差异的个体,适应每一个学生的不同发展需要。由于学生所处的家庭背景和思维方式的不同,他们的能力也是有差异的,每个学生都有自己的知识体验和生活积累,都有自己的思维方式和解决问题的策略。针对这一点,目标的制定应该分层次,不要求人人都达到相同的目标,但要求学生都能积极参与、尽情投入、力所能及。要做到使能力相对差一些学生能品尝到成功的喜悦;对于能力水平较好的学生来说也有充分施展才华的开放空间。毫无疑问,制定了准确、明确、有层次的目标,保证了教学的方向,使教学有了现实的可操作性和评价性,有利于教学效率的提高。13.谈谈你对新课标中“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”的理解。它要求教师在数学学习活动中,应该改变过于强调接受学习、死记硬背、机械训练的现状,让学生主动参与、乐于探究、勤于动手.体验性数学学习正顺应着这样的时代发展要求.体验性数学学习体现了主体参与的理念.美国教育家彼得克莱恩说“:学习的三大要素是接触、综合分析、实际参与.”他把实际参与看成是学习的最高水平.的确,学生是学习活动的主体,学生的学习和发展只有通过他们自己的学习实践才能实现,即体验等值于主体参与.因此,教师应该尽可能为学生提供可听、可看、可触摸、可经历、可操作的机会;尽可能把知识还原成原始问题或原始事实,让学生面对需要去思考、操作、讨论、合作,从而解决问题。二.小学数学课程与教学思考题1.数学的三个基本特征是: 基本特征:抽象性 逻辑严谨性 运用广泛性2.理解分析与综合、抽象与概括、判断与推理的概念。分析与综合是人类认识事物本质的必不可少的基本思维过程。分析简单地说就是指在头脑中将对象和现象分解成个别部分,从中找出它的属性、特征等,单独来考察的思维活动。综合就是指将分析了的各个部分结合起来,从整体来考察对象或现象的思维活动。抽象指发现事物的本质属性,放弃本质属性的思维过程。概括指从个别单独的属性推广到同类事物的属性的思维过程。判断是由理解到结论的思维过程,它是反映事物和现象某些本质属性的思维过程。推理是从一个判断作出另一种判断的思维过程。3.课程的四因素是: 教师 学生 教材 环境4.什么叫“课程标准”,什么叫“课程目标”?课程标准:某个学科教育的“整个思想和活动的结构”,是指某一个学科的教育理念、价值、内容、学习活动的实施以及评价方式等的总体要求,也就是指学科教育的一种规范。课程目标:对某一阶段学生所达到的标准提出的要求,反映了这一阶段的教育目的。5.当前小学数学课程变革在改善学生的学习方式上主要表现在哪些方面?表现:注重问题解决 注重数学应用 注重数学交流 注重数学思想方法 注重培养学生的态度情感与自信心。6.我国新世纪小学数学课程的一般性目标包括哪些方面?获得适应未来社会生活和进一步发展所需的重要数学知识以及基本的数学思想方法何必要的应用技能。初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。7.广义的“教材”及基本构成?教材:教师在教授行为中所利用的一切素材和手段基本构成:教科书 学生活动手册 教师教学指导手册 信息库 工具箱 多媒体课件8.教材的组织与呈现的发展势趋是什么在选择上表现出“切近儿童生活”的价值取向 在呈现上表现出“强化过程体验”的价值取向 在组织上表现出“注重探究发现”的价值取向9.国际小学数学课程内容变革的特点有哪些? 注重问题解决 注重数学运用 注重数学思想和数学交流 注重信息处理 注重数学体验 注重数学活动10.我国小学数学课程内容在呈现方式上的改革有哪些特点体现价值的主体性 体现知识的现实性 体现学习的探究性 体现经历的体验性 体现过程的开放性 体现呈现的多样性11.什么是接受学习、发现学习、有意义学习、机械学习?(见笔记)举小学数学教材中的实例说明机械学习和有意义学习的区别,接受学习和发现学习的区别。接受学习:指将学习的全部内容以定论的形式呈现给学习者的一种学习方式。发现学习:指有学习者独立操作而习得知识的一种学习方式有意义学习:符号所代表的新知识与学习者认知结构中已有的适当概念建立非人为的、实质性联系的过程。机械学习:指符号所代表的新知识与学习者认知结构中已有的知识建立非实质性的和人为的联系。区别:12.什么是技能、分类及技能形成的三个阶段、什么是问题解决及其两种主要方式? 技能:一系列动作的自动化和连锁化,是多种技巧的整合,是智力活动与操作活动的统一。分为动作技能、心智技能。 三个阶段:认知阶段 联结阶段 自动化阶段 问题解决:指在有特定的目标而没有达到目标的手段的情境中,运用特定领域的知识和认知策略去实现目标的一种思维活动。方式:尝试错误式(试误法)顿悟式(启发式)13.迁移的意义、形式及分类,什么是定势?举小学数学教材中实例说明迁移规律在小学数学教学中的应用意义:指一种学习对另一种学习的影响 形式:同化 异化(顺应)分类:正迁移 负迁移定势:指先于一个活动而指向的一种准备状态,其实质就是关于活动方向选择方面的一种倾向性。如整数加减与小数加减,四边形面积和三角形面积(具体内容自定)14.儿童数学认知学习有哪些基本特点?儿童数学认识的起点是他们生活常识儿童数学认识是一个主体性的数学活动过程儿童的数学认识思维具有明显的直观化特征儿童的数学认识是一个数学的“再发现”与“再创造”的过程。15.什么是数学能力?什么是运算能力及描述能力的变量的四个方面?什么是空间观念、空间想象能力?数学思维及分类 数学能力:在数学上所表现出来的一种能力特征,或者是人们在从事数学活动中所表现出来的、保证这种活动顺利进行的一种稳定的心里特征。三个基本性问题:数学能力的特征性问题 结构性问题 能力类型差异问题。 运算能力:感知数学特征的能力算式恒等变形(处理数据)的能力对数的分解与组合的能力灵活运用法则以及性质和定律 描述能力:准确性 速度 合理 灵活简洁 空间观念:指物体的大小、形状、方向、距离及其位置的关系等在头脑留下的表象。 空间想象能力:只对客观事物的空间形式进行观察、分析、归纳和抽象的能力。 数学思维:对已有数学信息运用数学推理的思考方式进行思维的能力。分类:按思维层次分:动作思维 形象思维 抽象思维按逻辑性:逻辑思维 非逻辑思维。16.尝试学习及基本流程;举小学数学教学中的实例简述尝试教学模式。发现学习及基本流程;举小学数学教学中的实例简述引导发现模式。“尝试教学法”和“引导发现去”的共同特点是什么?探究学习及基本流程;接受学习及基本流程(见笔记) 尝试学习:由学生用尝试的方法,去发现所学的知识,初步解决问题。 基本流程:提出常识问题 解决尝试问题(自学课本 合作讨论 动手操作 提问请教 资料查询) 自我评价、自我鉴别 举例:万以内数和多位数加减法 复合应用题 分数加减法 发现学习:指学生不是从教师的讲述中得到一个概念或原则,而是在教师组织的学习情境中,学生通过自己的头脑亲自获得知识的一种方法。 流程:创设情境 提出假设 检验假设 总结运用 举例:三角形面积共同特点:反对传统的机械学习法;创设情境发挥学生学习的主动性;都是问题解决式学习,以问题的形成为学习的起始阶段,重视学生的学习兴趣和主动参与,重视知识的获得过程;同时在20世纪中期的课程改革运动中兴起和广泛传播探究学习:指仿照科学研究的过程来学习科学内容,从而在掌握科学内容的同时体验、理解和应用科学研究方法,掌握科研能力的一种学习方式。基本流程:设置问题情境 提出假设 获得结论 反思评价接受学习:人类个体经验的获得,来源于学习活动中,主体对他人经验的接受,把别人发现的经验经过其掌握、占有或吸收,转化成自己的经验。基本流程:接受新知识 同化内化新知识 形成新的知识体系17.小学数学的课堂教学的意义及特征各是什么?意义:指学生在教室有意识、有计划地组织和引导下,在一定的时间和空间内的一种定向的数学学习过程。特征:数学课堂教学过程就是数学活动的过程 就是师生以数学问题为媒介的相互作用过程 是师生共同发展的过程18.学生参与分类及各种参与的意义和关系,教师在课堂教学中的角色和作用有哪些?分类:行为参与(学生在课堂学习过程中的行为表现) 情感参与(学生在课堂学习过程中所获得的情感体验) 认识参与(学生在课堂学习过程中通过学习方法所表现出来的思维水平与层次)关系:行为参与(外显)描述的变量 情感参与(内隐)描述的变量情感体验认识参与(内隐)描述的变量认识参与策略P119 图6-1角色和作用:在课堂学习活动中起设计和组织作用 起引导、激励和促进的作用 其诊断和导向的作用。19.学习评价的价值有哪些?学习评价可分几类?学习评价的基本原则是什么?获得性评价和表现性评价的测量方法各有哪些?课堂教学评价的基本方法有哪些? 价值:导向价值 反馈价值 诊断价值 激励价值 研究价值 分类:按评价的取向角度:目标取向的评价 过程取向的评价 主题取向的评价 按评价的方法论:量化的评价 质性的评价 基本原则:发展性原则 过程性原则 全面性原则 获得性评价:作业考察 纸笔测验 课堂活动 表现性评价:解释性任务 设计性任务 制作性人物 调查性任务 实验性任务 反思性任务课堂教学评价的基本方法:临床观察法 交流访谈法 随堂测验法 研讨解析法20.构建小学数学教学策略的主要原则有哪些?有效教学策略的标准是什么主要原则:准备原则 活动的原则 主动参与的原则 兴趣性原则 个别适应原则标准:能促进学生主动参与学习 能强化学生在学习中的体验 能激发学生独立思考和自主探索 能鼓励学生的合作交流21.什么是教学方法?常见的小学数学教学方法有哪些?它们的含义和特征如何? 教学方法:指向特定的课程与教学目标,受特定课程内容所制约的、为师生所共同遵循的教育学的造作规范和步骤,它是引导、调节教学过程的规范体系。叙述式讲解法:通过教师的口述和示范,向学生描绘情境、叙述事实、解释概念、论证原理或阐明规律的一种教学方法。特点:能系统地、清晰地将数学知识教授给学生,并使学生在学好知识的同时也逐渐形成分析推理能力。启发式谈话法:通过教师与学生之间的对话来引发学生的探索和思考,从而形成新的认知的一种数学方法。 特点:能激发学生充分进行思考,并能让学生充分地发表自己的见解和想法,从而在使学生获得数学认识的同时,发展他们的思维能力。演示法:通过教师向学生呈示或演示,让学生去观察,从而使学生发现对象的本质特征的一种教学方法。特征:呈示或演示仅仅是手段,学生通过自己的观察、思考、辨析、讨论,概括出对象的本质特征是目的。实验法:通过学生的尝试操作来概括出典型本质特征的一种教学方法。 特征:验证性试验是在学生已有的一定经验或已经初步构建的对对象认识的基础上,通过验证性操作让学生进一步去体验知识的内涵,从而真正抓住对象的本质特征。探索性实验让学生对问题情境进行探索性操作,通过自己的多次观察、实验和思考,发现并概括出对象的本质特征。练习法:学生在教师的引导下,通过独立的或小组作业,进一步理解并掌握知识,从而形成基本技能的一种教学方法。特征:练习要有针对性 层次性 多样性 明确的练习目标。22.新授课、练习课、复习课、试卷评析课的主要任务分别是什么?一般结构各是什么?新授课:使学生获得新的数学知识与方法。结构:创设情境,导入新课探究新知巩固内化课堂小结活动总结,课外延伸练习课:是新知教学后,对知识进行综合运用,通过练习进一步巩固所学知识从而达到培养技能形成技巧,发展智力的目的。结构:复习引入 指导练习 深化练习 课堂小结 安排作业复习课:加强知识理解,使之系统化。结构:问题驱动、自主学习 重点难点、合作探究 知识梳理、点拔归纳 典例评析、深化提高 变式巩固、拓展完善。试卷评析课:分析考察中存在的普通性问题,补缺补漏。结构:考察情况简介 分析考察中普遍性错误 分发试卷,订正试卷 布置针对性练习23.什么是小学数学教学设计?其基本过程包括什么?前期分析包括什么?教材内容分析依次包括哪几方面?什么是重点、难点、关键?习题分析的任务是什么?什么是教学目标?制定课时教学目标的基本要求是什么?设计教学方案一般包括哪些设计?设计课堂练习应着重考虑哪几个方面?课时教学计划的主要内容一般包括哪些?制定小学教材中的某一课时“新授课”的目标并设计教学活动过程。 小学教学设计:依据小学数学的特点和小学生学习数学的特点,运用教学设计的基本原理和方法,制定课堂教学方案的过程。基本过程:前期分析 方案设计 数学评价 前期分析包括:学习需要 学习内容 学习者教材内容分析:掌握各部分教学内容的科学性 挖掘各部分教学内容的思想性、智力性和趣味性 明确各部分内容的教学重点、难点和关键。重点:指某一范围内容的重要部分。 难点:指那些难于被学生理解、掌握或容易引起混淆、错误的内容 关键:指那些对学生理解、掌握知识起着决定性作用的内容。习题分析的任务:要研究习题配备的目的性、层次性 要研究习题所蕴涵的数学思想方法及其拓展性 要研究教材中出现的一些练习形式,了解其特点和作用。教学目标:是社会或国家为实现教育目的,在数学领域内给教师提出的一种原则性的、高度概括的要求,也是教育着一种主观愿望,一种应该达到的理想状态。目标则是目的的具体化,是一种策略的、可观察、可测量、可评价的学习结果的陈述。基本要求:具体明确,恰如其分 一般包括:设计教学目标 教学内容设计 教学过程设计练习课应考虑:练习内容的针对性 安排的层次性 形式的多样性 要求的差异性 反馈的有效性课时教学一般包括:本课的教学内容或课题 本课的教学目标 教具、学具以及现代化教学手段的准备 教学过程的安排 板书设计设计就是自己写教案三、概念教学及实际应用(复习索引):1.什么是数学概念?其表现形式是什么?什么是概念的内涵和外延?什么是概念的形成和同化?其主要过程各有哪些?。概念的引入、构建、巩固和应用的策略各有哪些?影响概念构建的数学思维能力主要有哪些能力?什么是抽象能力和概括能力?数学概念:是客观现实中的数量关系和空间形式的本质属性在人脑中的反映。其表现形式为数学语言中的名词、术语、符号的准确含义。概念的内涵是概念反映的所有对象的共同本质属性的总和,外延指概念反映的所有对象的全体。概念的形成:学习者从大量的同类事物的不同例证中独立地发现并形成数学概念的过程。主要过程:感觉具体对象阶段 尝试建立表象阶段 抽象本质属性阶段 符号表征阶段 概念的运用阶段。概念的同化:借助学生已掌握的概念,改变其内涵(或外延),从而建立新概念,再通过对比、分析、推理等方法,辨析新概念和原有概念的异同,从而掌握新概念。主要过程:唤起认知结构中相关概念的阶段 进一步抽象形成新概念阶段 分离新概念的关键属性阶段 运用并强化概念理解阶段。引入策略:生活化策略 操作性策略 情境激凝策略 知识迁移策略构建策略:多例比较策略 表象过度策略 概括关键要素策略 表述交流策略 多次归纳策略 操作分类策略 概念具体化策略巩固应用策略:变式训练 精细加工策略 概念结构化策略 强化运用策略影响能力:观察能力 分析比较能力 抽象概括能力抽象能力:把具有共同属性的事物看做一类,善于透过现象抓住本质,揭开表面上的差异性,发现隐藏在背后的共同特征的能力。概括能力:从特殊的具体事物中抽象出来的共同特征,推演到同类事物中,并形成一般概念的能力或者是发现与某已知概念的关系,把个别特征纳入已知概念的能力。2、新课标第一学段对“数与代数”教学有何要求和建议?要引导学生联系自己身边具体、有趣的事物,通过观察、操作、解决问题等丰富的活动,感受数的意义,体会数用来表示和交流的作用,初步建立数感;应重视口算,加强估算,提倡算法多样化,应减少单纯的技能性训练,避免繁杂计算和程式化地叙述“算理”。3、以小学数学教材中的某些概念教学为例,简述数学概念的形成和同化的区别。 数学概念形成需要的是对物体或事件的直接经验,从这些物体或事件中抽象出它们的共同属性.而在数学概念同化的过程中,新的数学概念的共同属性一般都是教师指出的,不需要学生自己去发现,重要的是使学生把新知识与头脑中已有的有关知识联系起来.在概念形成过程中,要求学生对所发现的共同属性进行检验,并通过对所发现的共同属性的修正,最终确定它们的本质属性.而在数学概念同化过程中,则要求学生辨别所学习的新概念与原有认知结构中的有关概念的异同.并将新概念纳入到原有的认知结构中去.(举例略)4、以“读出:50030048390”和“写出:七千五百万四千零八”为例,确定学生学习多位数读、写法的知识基础、教学目标、多位数读法和写法的法则、重点、难点、关键,并设计教学导入和探索新知的教学片断。并把这两个数改写成用万作单位和省略万后面的尾数,谈谈“改写”和“省略”的区别。(多位数读数的法则是:从高位读起,一级一级往下读;亿级读完加上“亿”字,万读完加上“万”字;级间不管连续有几个0都只读一个零,级末尾0不读。多位数写数的法则是:从高位写起一级一级往下写,哪一位一个也没有就用0占位。重点是理解掌握读、写数的法则;难点是级中间、末尾有0读法;关键是熟记数位顺序表和掌握读写法则。(设计教学目标、导入和探索新知的教学片断和举例(略)。教学目标是:(1)在掌握数位顺序和“四位分级”的基础上,掌握多位数的读数方法,能正确读出一般多位数和中间、末尾有0的多位数。(2)让学生在理解的基础上,用自己的语言概括整理多位数的读数法则,初步培养学生分析和概括能力。(3)感受多位数在生活中的应用,体会数学的应用价值。以万作单位:5003004.839万 7500.4008万 省略:5003005万 7500万 区别:一个不需要四舍五入是原数 一个需要是近似数。5、以生活实例说明四则运算的实际含义各是什么?分别写出整数四则运算的意义、分数的意义,3/7表示什么?四则运算的意义:加:把两个数合成一个数的运算 减:知道两个数的合和其中的一个加数,求另一个加数 乘:求几个相同加数和的简便运算 除:已知两个因数的积和其中的一个因数,求另一个因数。分数的意义:把单位“1”平均分成若干份表示其中的一份或者几份的数叫做分数。37表示:把单位“1”平均分成7份表示其中的3份四、规则教学及实际应用(复习索引):1、什么是数学规则?其表现形式是什么?什么叫运算法则?儿童数学规则学习的特点有哪些?一般看来,运算要求分为三个层次:会、比较熟练、熟练。常见的数学规则学习的基本模式有哪些?数学规则建立有哪些策略?数学规则的巩固和运用应注意哪些问题?如何预防与矫正小学生计算的错误?数学规则:是数学知识的重要组成部分,是两个或两个以上数学概念之间的关系及其规律性在人脑的反映。 表现形式:法则 定律 公式 公理 定理运算法则:关于运算方法和程序的规定,运算法则的理论依据称为算理。特点:生活经验是理解运算意义的基础 规则的运用有明显的阶段性 从实物表征运算到符号运算模式:例证规则 规则例证策略:力争要有利于学生发现规则、发展智能 由直观到抽象,由个别到一般 紧密结合例证,逐级抽象概括 突出算理,以理驭法问题:加强练习的目的性 创设有趣位的练习情境 练习设计要有坡度 联系分量适当,时间分配合理 练习要有一定弹性矫正和预防:加强口算训练 重视运算法则的教学 培养学生验算的习惯 养成学生正确的作业态度和良好的作业习惯 认真查找错误原因,及时矫正。2、以如“85”为例,写出20以内进位加法“凑十法”的思维过程及重点、难点。思维过程:看大数,分小数 先凑10 再加几重点:掌握“凑十法”难点:理解凑十法的法则和原理3、以如“127”为例,分别写出20以内退位减法用“算减想加法”、“破十法”、“平十法”、“退十加补法”等计算方法的思考过程。想加算减:7+5=12 12-7=5 破十法:10-7=3 2+3=5 平十法:12-2=10 10-5=5退十加补法:12-10+3=54、以“1/21/3”为例,确定异分母分数加减法的知识基础、教学目标、计算法则、重点、难点、关键,并设计导入和探索新知的教学片断。知识基础:前阶段学习的同分母加减法教学目标:使学生理解异分母分数加减法的算理 初步掌握异分母分数加减法的法则重点:异分母分数加减法的计算法则难点:运用通分的方法解决异分母分数不能直接相加减的问题关键:掌握通分的思想和方法教学片断:一、铺垫孕伏1教师:同学们,上一节课我们学习了同分母分数加减法,这节课我们来学习异分母分数加减法。什么是通分?(把几个不同分母的分数转化成几个同分母分数的过程)2读一读,找一找分数单位相同的分数(出示一组数):1/2 1/3 3/8 5/12 7/8(分母相同的分数分数单位相同)1)自己任选两个数组成加法算式和减法算式(2)学生可能出现的算式: (3)引导学生把上面算式分成两类:一类为同分母分数加减法,一类为分母不同的分数加减法师和学生把同分母的一对分数的答案板书好。(师板书各个算式)教师引入:分母相同的分数加减法我们已会做,那分母不同的分数加减法又怎样计算呢?这节课我们就来解决异分母分数加减法,好不好?(板书:异分母分数加减法)二、探究新知(一)异分母分数加法1教师提示:请你用学过的知识把1/2+1/3这个分母不同的分数加法算式计算出来,试一试,能行吗?(板书:1/2+1/3)2学生可以同桌讨论3汇报结果:(最好是有两种不同的结果2/5 和5/6)4(1)师讲解(2)分析和总结异分母分数加减法的计算方法 (板书1/2+1/3=3/6+2/6=5/6)5比较同分母分数加减法和异分母分数加减法的不同。(要先通分)转化 (板书过程)(二)异分母分数减法(选两个分母不同的减法算式)1教师提示:请你依照异分母分数加法的计算方法解决异分母分数减法的计算问题学生自己独立完成(指名上黑板做)2汇报结果(师生一起分析黑板上的题目) (三)整理法则1启发学生讨论:根据上面做题的过程,怎样把异分母加法法则和异分母减法法则合并成一个法则2学生汇报讨论结果,教师课件演示(读一读,填一填)异分母分数相加、减,先通分,然后按照同分母分数加、减法的法则进行计算即最后结果要注意能约分的要先约分到最简分数,把假分数转化成带分数或整数。5、分别写出整数、小数、分数加减法计算法则,简述整数、小数、分数加减法计算法则在语言表述上有何区别?又有何本质联系?以某小学数学教材中的某一法则为例,简述新理念下的小学数学计算教学的一般教学步骤。整数:相同数位对齐 小数:小数点对齐 分数:分母相当分母不变,分子相加减;异分母先通分,再分子相加减。区别:本质联系:计数单位的个数相加减教学步骤:生活情境引出算式 学生自主探索方法和结果 师生总结方法原则 巩固法则 课堂作业。(举例略)6、以某一组乘法口诀为例谈谈乘法口诀教学的一般步骤,及记住口诀的方法。一般步骤:生活情境引出加法算式 乘法算式 口诀 记住口诀方法:四记结合记口诀:意记(会编) 练记(形式多样 乐于重复) 强记(横竖顺倒拐弯对口令的背) 巧记(找规律)7、以如“2412”为例,确定两位数乘两位数笔算的知识基础、教学目标、计算法则、重点、难点、关键,并设计导入和探索新知的教学片断。(两位数乘两位数笔算的知识基础是:一位数乘两位数笔算和口算;计算法则:是从个位乘起,先用第二个因数的个位去乘第一个因数的每一位上的数,第二个因数的个位去乘积要与因数的个位对齐,十位去乘积要与因数的十位对齐,再把两次的积相加。重点是理解掌握法则;难点是为什么第二个因数的十位去乘积要与因数的十位对齐;关键是弄清算理。)教学目标:1、知识与技能目标:让学生经历探索两位数乘两位数的计算方法的过程,初步掌握笔算方法,理解算理与方法。2、过程与方法目标:学生通过自主探索、合作交流,体验计算方法的多样化,并能进行自主优化。3、情感态度与价值观目标:在探索算法与解决问题过程中,增强相互交流的意识,体验成功的喜悦,体会数学在生活中的应用价值举例:略8、以三年级.上p50-52为例制定“有余数除法”的教学目标,并谈谈你准备通过师生的哪些活动来实现这些目标?教学目标:1使学生初步理解有余数除法的意义,掌握有余数除法的计算方法2使学生掌握试商的方法,懂得余数要比除数小的道理3培养学生初步的观察、概括能力活动:教师谈话引导 多媒体课件的运用 学生讨论,实践操作9、按照取近似值的方法划分,估算方法可分为哪三种?按照保留的数位划分,估算方法可分为哪三种?近似值:上限估算 下限估算 四舍五入估算 保留数位:高位估算 低位估算 分段估算10、写出笔算除法的法则,举例说明笔算除法是两、三位除法(列竖式算)有哪些试商方法。(笔算除法的法则是:(1)从被除数最高位除起;(2)除到哪一位商就写在哪一位的上面;(3)每次除得的余数都要比除数小;(4)从被除数移下一位还不够除商要写0移一位再除。笔算除法是两、三位除法有试商方法有:(1)“四舍五入法”;(2)“口算法”;(3)“同头无除商9、8法”;(4)“近半先商5法”。(举例略)11以某小学数学教材中的某一法则为例,简述新理念下的小学数学计算教学的一般教学步骤。(见5)12、以某小学数学教材中的某一定律或性质为例,简述新理念下引导小学生发现小学数学规律性知识的一般教学思路,设计教学目标、重点、难点、关键、导入和探索新知的教学片断。(新理念下引导小学生发现小学数学规律性知识的一般教学思路是:生活实际引入计算部分式题观察比较式子的变化特点发现结果的变化规律性抽象概括出规律性知识(如定律、性质等)运用规律性知识(如运用定律、性质简便计算等)。(设计教学目标、重点、难点、关键、导入和探索新知的教学片断和举例略)。如:加法交换律:教学目标:1、经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,感知加法运算律的价值,发展应用意识。2、在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。3、在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。教学重点:使学生理解并掌握加法交换律,能用字母来表示加法交换律。教学难点:使学生经理探索加法交换律的过程,发现并概括出运算律。关键:掌握加法交换律的探索方法和思想教学过程:一、探索加法交换律1、大家请看大屏幕,这些同学在进行体育锻炼,现在老师有个问题:跳绳的有多少人?应该怎么列式呢?指名回答,教师板书:28+17=45(人),追问:还可以怎么列?在学生回答后,教师完成板书:17+28 =45(人)2、问:观察这两个算式,你有什么发现?这两道算式的得数怎么样?可以用什么符号连接?板书:28+17=17+28仔细地观察一下这个等式,在等号的两边,有什么相同?有什么不同?3、你们能够象这样再说出几个类似的等式吗?根据学生回答,教师相机板书算式,并追问:说的对吗?我们来验证一下。(学生算等号左右两边的得数分别是多少)问:这样的算式能写几个?(板书:省略号)4、我们再仔细的观察这几个等式,你能不能用一句话说一说从中有什么发现?(小组交流)同桌之间互相说一说,再指名汇报,学生发现规律:两个数相加,交换加数的位置,它们的和不变。大家能不能用自己喜欢的符号、图形、字母等把发现的规律表示出来呢?在本子上试着写一写。指名回答。5、大家都用自己的喜欢的方式表示了你们的发现,我们一般都用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这个规律该怎样表示呢?板书:a+b=b+a。(学生读一遍)6、教师指着板书指出:这个规律就是加法交换律(板书:加法交换律),也就是说:两个数相加,交换加数的位置,和不变,7、其实加法交换律我们早就会用了,想想看,什么时候我们用过?指出:在验算加法时用的就是加法交换律。13、写出整数、小数、分数大小比较的法则,举例说明整数、小数、分数的大小比较法则有什么不同,相互间会产生哪些负迁移?整数:位数多的就大 位数一样,最高位最高的就最大小数:先比整数,整数大的就大,再比较小数一位一位往下比。分数:同分母分子大的就大,异分母的化成同分母再比较。(小数并不是位数多的就大 负迁移)14整数四则运算的意义分别是什么?只有加减或乘除运算则要从左往右计算,有乘除和加减法先算乘除后算加减。如果有括号则要先算括号内的。五、空间与图形教学及实际应用(复习索引):1、形成空间观念的特征是什么?儿童形成空间概念的有哪些心理特点?儿童空间几何学习的特点有哪些? 特征:认识形体形状特征,并能迅速再现这些形体特征的表象 认识形体大小,并能迅速再现这些形体大小的表象 认识形体间的位置关系,并能迅速再现这些物体间的位置关系的表象。 心理特点:对直观的依赖性强 用经验来思考和描述性质或概念 空间概念的形成依靠渐进的过程 容易感知图形的外线性较强的因素 对图形性之间的关系有一个逐渐理解的过程 对图形的认识依赖标准形式 依据平面再造立体图形的空间想象能力是逐步形成的 学习特点:经验是儿童几何学习的起点 操作是儿童构建空间表象的主要形式2、新课标第二学段对“空间与图形”教学有何要求和建议?应注重使学生探索现实世界中有关空间与图形的问题;使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面形状、大小、位置关系变换;通过观察物体、认识方向、制作模3、小学数学空间几何知识初步知识教学的意义是什么?要发展儿童的空间观念教学过程中要重视哪几个方面?意义:培养小学生初步的空间观念是小学数学教学的目的之一,而空间观念的形成是同几何初步知识教学密切联系着的,小学生正是从点,线,角,圆和简单的几何图形的形状及其长度,面积,体积等概念中,获得一些初步空间想象力的重视:回归儿童的生活经验 从对象的形体特征观察入手 通过做来学习 加强交流和想象活动4、以“角、平行线、垂线的认识”为例,简述几何图形认识的一般教学思路。教学思路:实物教具 标准图形 特征 概念 变试图形 巩固应用5、以小学数学教材中的某一平面几何面积公式推导为例,简述平面几何面积公式推导的一般教学思路。复习原有(上位)公式直接计量 简拼成已学图形 找出对应线段 推导出公式 应用公式,解决问题六、统计概率和量与计量教学及实际应用1.能指出统计表的各部分名称;各种统计图的作用各是什么?标题 制表日期表头纵标目横标目条形统计图:反映数量多少 折线:反映事物变化的趋势 扇形:部分量与部分量,总量的关系2.新课标第二学段对“统计与概率”教学有何要求和建议?应注重所学内容与现实生活的紧密联系;应注重使学生有意识地经历简单的数据统计过程,根据数据作出简单的判断与预测,并进行交流;应注重在具体情境中队可能性的体验;应避免单纯的统计量的计算3.小学数学统计初步知识教学的意义是什么?统计教学组织的主要策略有哪些,概率教学组织有哪些主要策略?意义:随着现代社会和科技的发展,统计的思想和方法在日常生活、生产和科学研究中用越来越广泛,已经成为人们普遍需要掌握的基础知识。学生及早学习一些统计初步知识,对于培养他们的统计意识,为进一步学习作准备是十分有益的。由于统计的应用性特别强,体现了数学知识与现实社会的联系,因此,它的学习也利于培养聋生的分析问题和解决问题的能力。统计策略:注重儿童生活的策略 强化数学活动的策略 将知识运用于现实情境的策略概率策略:活动的体验性策略 游戏的引导性策略 方案的尝试设计策略4.小学数学“量与计量”教学的意义是什么?以“某一计量单位的认识”为例简述计量单位认识的一般教学思路。分别写出如:3米()厘米、180分钟()小时、3.05吨()吨()千克、3小时15分钟()小时的思考过程。意义:量的计量在科学研究、生产劳动、各项工作以及日常生活中都有着广泛的应用,同数一样,人们进行任何社会活动都离不开量,而且数总是同量的计量密切联系着;量的计量还是进一步学习数学和其它学科的必要基础。学生认识一些最基本的常用的计量单位,掌握单位间的进率,进行名数的简单计算,并进行简单的测量。这不仅给学生打好进一步学习的基础,还培养学生运用数学知识解决实际问题的能力
展开阅读全文