高中数学 函数极限的运算规则

上传人:无*** 文档编号:28225953 上传时间:2021-08-24 格式:DOC 页数:7 大小:228.50KB
返回 下载 相关 举报
高中数学 函数极限的运算规则_第1页
第1页 / 共7页
高中数学 函数极限的运算规则_第2页
第2页 / 共7页
高中数学 函数极限的运算规则_第3页
第3页 / 共7页
点击查看更多>>
资源描述
函数极限的运算规则前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。、函数极限的运算规则 若已知xx0(或x)时,.则: 推论: 在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。例题:求解答:例题:求此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。解答:注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。来源:函数极限的存在准则学习函数极限的存在准则之前,我们先来学习一下左、右的概念。 我们先来看一个例子:例:符号函数为对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。定义:如果x仅从左侧(xx0)趋近x0时,函数与常量A无限接近,则称A为函数当时的左极限.记:来源:如果x仅从右侧(xx0)趋近x0时,函数与常量A无限接近,则称A为函数当时的右极限.记:注:只有当xx0时,函数的左、右极限存在且相等,方称在xx0时有极限函数极限的存在准则 准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有,且,那末存在,且等于A来源:注:此准则也就是夹逼准则.准则二:单调有界的函数必有极限.注:有极限的函数不一定单调有界两个重要的极限 一:注:其中e为无理数,它的值为:e=2.718281828459045.二:注:在此我们对这两个重要极限不加以证明.注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们.例题:求解答:令,则x=-2t,因为x,故t,则注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x时,若用t代换1/x,则t0.无穷大量和无穷小量无穷大量我们先来看一个例子:已知函数,当x0时,可知,我们把这种情况称为趋向无穷大。为此我们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数,当时,成立,则称函数当时为无穷大量。记为:(表示为无穷大量,实际它是没有极限的)同样我们可以给出当x时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函数当x时是无穷大量,记为:无穷小量以零为极限的变量称为无穷小量。定义:设有函数,对于任意给定的正数(不论它多么小),总存在正数(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x)时 为无穷小量.记作:(或)注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.关于无穷小量的两个定理定理一:如果函数在(或x)时有极限A,则差是当(或x)时的无穷小量,反之亦成立。定理二:无穷小量的有利运算定理a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.无穷小量的比较通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。定义:设,都是时的无穷小量,且在x0的去心领域内不为零,a):如果,则称是的高阶无穷小或是的低阶无穷小;b):如果,则称和是同阶无穷小;c):如果,则称和是等价无穷小,记作:(与等价)例:因为,所以当x0时,x与3x是同阶无穷小;因为,所以当x0时,x2是3x的高阶无穷小;因为,所以当x0时,sinx与x是等价无穷小。来源: 等价无穷小的性质设,且存在,则.注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。例题:1.求解答:当x0时,sinaxax,tanbxbx,故:例题: 2.求解答:注:注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。函数的一重要性质连续性在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性在定义函数的连续性之前我们先来学习一个概念增量设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:x即:x=x2-x1 增量x可正可负.我们再来看一个例子:函数在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+x时,函数y相应地从变到,其对应的增量为:这个关系式的几何解释如下图:现在我们可对连续性的概念这样描述:如果当x趋向于零时,函数y对应的增量y也趋向于零,即:,那末就称函数在点x0处连续。函数连续性的定义:设函数在点x0的某个邻域内有定义,如果有称函数在点x0处连续,且称x0为函数的的连续点.下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数在区间(a,b内有定义,如果左极限存在且等于,即:=,那末我们就称函数在点b左连续.设函数在区间a,b)内有定义,如果右极限存在且等于,即:=,那末我们就称函数在点a右连续.一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间a,b连续,如果在整个定义域内连续,则称为连续函数。注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.注:连续函数图形是一条连续而不间断的曲线。通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点函数的间断点定义:我们把不满足函数连续性的点称之为间断点. 它包括三种情形:a):在x0无定义;b):在xx0时无极限;c):在xx0时有极限但不等于;下面我们通过例题来学习一下间断点的类型:例1: 正切函数在处没有定义,所以点是函数的间断点,因,我们就称为函数的无穷间断点;例2:函数在点x=0处没有定义;故当x0时,函数值在-1与+1之间变动无限多次,我们就称点x=0叫做函数的振荡间断点; 例3:函数当x0时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0是不存在极限。我们还可以发现在点x=0时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:间断点的分类我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.可去间断点若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函数不连续原因是:不存在或者是存在但。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!