高中物理竞赛辅导2.4.3 动生电磁感应

上传人:仙*** 文档编号:26977822 上传时间:2021-08-15 格式:DOC 页数:24 大小:850.01KB
返回 下载 相关 举报
高中物理竞赛辅导2.4.3 动生电磁感应_第1页
第1页 / 共24页
高中物理竞赛辅导2.4.3 动生电磁感应_第2页
第2页 / 共24页
高中物理竞赛辅导2.4.3 动生电磁感应_第3页
第3页 / 共24页
点击查看更多>>
资源描述
43 动生电磁感应+ + +_ _ _LB_F图4-3-1导体在磁场中做切割线运动,在导体两端产生感生电动势的现象叫动生电磁感应。其一是不变,a不变,但电路的一部分切割磁力线运动使得回路面积改变,从而使得变;其二是、S不变,但a变,即回路在磁场中转动,使得回路所包围的面与的夹角改变,从而使得变。产生原因:动生电磁感应的产生是由于洛仑兹力的作用。导体ab在磁场B中做垂直于磁力线的运动,速度图4-3-1为v,导体长度为L。由于导体中所有自由电子也随着导体一起以v向右运动,因此受到洛仑兹力,这样就使导体的b端积累了负电荷,a端积累了正电荷,形成了感生电场(图4-3-1)。这种自由电子的定向移动一直要进行到洛仑兹力和感生电场的电场力相互平衡为止,即,。431、导体平动切割其中L是ab的长度,v是ab的速度。这里满足。图4-3-2AB图4-3-3若v方向与磁场B方向存在夹角,如图4-3-1所示,则电动势为如果切割磁场的导线并非直线,而是一段弯曲导线,如图4-3-3所示:则其电动势大小应等效于连在AB间直导线切割磁场时电动势的大小。即: 如图4-3-4所示,一根被弯成半径为R=10cm的半圆形导线,在磁感应强度B=1.5T的均匀磁场中以速度v=6m/s沿ac方向向右移动,磁场的方向垂直图面向里。1、导线上a、b两点的电势差,指出哪一点电势高。O图4-3-42、求导线上a、c两点的电势差。解:1、a、b两点的电势差b点的电势高2、a、c两点间的电势差为0。432、导体转动切割一般是来要用积分的方法才能求出整根导体上的动生电动势,但有些特殊情况还是可以用初等数学来解。比如图4-3-4所示的金属杆AB绕O轴在磁场中匀速转动,因为杆上各点的线速度是均匀变化的,所以可用平均速度来求电动势。OB之间的动生电动势AOB图4-3-5OA之间的动电动势所以 。此类问题也可这样分析如图4-3-5所示,匀强磁场中一段导体棒AB垂直于磁场放置,当导体棒A点在垂直于磁场平面以角速度旋转时,AB中同样会产生电动势,确定其电动势大小,可假想存在一个ABC回路,在时间,AB转过,回路磁通量变化AB图4-3-5CAB图4-3-5图4-3-6BB由法拉第电磁感应定律动生电动势可用来发电。例如,如图4-3-6所示,在匀强磁场B中,矩形线圈以角速度绕线圈的中央轴旋转,当线圈平面的法线方向n与磁感应强度B的夹角为时,线圈中的感应电动势为式中S是线圈的面积。若线圈以作匀角速旋转,且t=0时,则有式中。可见随时间简谐式的变化,这就是交流发电机的基本工作原理。433、典型例题例1. 如图4-3-7所示,OC为一绝缘杆,C端固定一金属细杆MN,已知MC=CN,MN=OC=R,MCO=60。,此结构整体可绕O点在纸面内沿顺时针方向以匀角速度转动,设磁感强度为B,方向垂直于纸面向里的匀强磁场存在,则M、N两点间的电势差UMN=?分析:因MN棒上各点切割磁感线的速度各不相同,故直接用公式不甚方便,考虑到UOM与UON极易求到,所以想到对本题进行适当变换。解:连OM、ON构成一个三角形OMN,在转动过程中,因三角形回路中磁通量不变,故有MNCO图4-3-7,且,所以说明求感应电动势时,经常会用到各种等效替换,如有效长度的等效替换,切割速度的等效替换及像本题中的线面变换(即将面分割成线、连线构成面)等。例2.一边长为l的正方形线圈(线圈的横截面积为S,电阻率为),以匀速v通过均匀磁成45。夹角,如图4-3-8所示。磁场区域的宽为a,高为b。(1)若bl,al,问线圈通过均匀磁场B后释放多少焦耳热?(2)如bl,al,问线圈通过均匀磁场B后释放多少焦耳热?分析:把速度v正交分解成v与v(v平行于磁场上边界a,v垂直于上边界a),并注意到线圈的感应电动势等于各边电动势时代数和。解: (1)当bl,al时,放出的焦耳热为B图4-3-8(2)bl,al时,放出的焦耳热为例3.如图4-3-9(a)所示,有一匀强磁场,磁感应强度,在垂直于磁场的平面内有一金属棒PQ绕平行于磁场的O轴作逆时针转动。已知棒长L=0.06m,O轴与P端相距l/3。棒的转速n是2.0r/s。1、求棒中的感应电动势。2、P、Q两端中哪一端的电势高?为什么?解: 1、设金属棒PQ在t时间内绕O轴转过的角度为(图4-3-9(b)),则=2nt。OQPOPQ图3-2-9(a)图3-2-9(b)由扇面形面积公式可算出OQ段和OP段在t时间内扫过的面积使:由上列两式和可进一步算出OQ段和OP段在t时间内切割的磁感应线和根据法拉第电磁感应定律,可算出在OQ和OP段的感应电动势和的数值根据右手定则可确定,的方向由Q指向O,的方向由P指向O,两者方向相反,因此,金属棒PQ中的感应电动势为其方向由Q向P。2、P端的电势高。因为如果有导线连接P,Q两端,则显然感应电动势将产生从P端经过导线流向Q端的电流。例4、有的问题中杆的运动方向、杆的轴线方向都和B不垂直,杆上各点的速度又不同,处理起来就比较复杂一些,请看下题。BPQ图4-3-10如图4-3-10所示的直角坐标中,有一绝缘圆锥体,半锥角为,轴线沿z轴方向,顶点在原点处。有一条长为l的细金属丝OP固定在圆锥体的侧面上,与圆锥体的一条母线重合,空间存在着沿正x方向的匀强磁场B。试讨论当圆锥体如图所示方向做角速度为的匀角速转动时,OP上感生电动势的情况。解:当P点的x坐标为正时,P点的电势都高于O点的电势;当P点的x坐标为负时,P点的电势都低于O点的电势;当P点的y坐标为0,即OP在xOz平面时,OP上的感生电动势最大。此时OP在垂直于B方向上的有效长度为,P点的速度为BPQS图4-3-11而O点的速度为零,所以OP上各点的平均速度为vp/2。因此此时OP上的感生电动势大小为.当P点运动到某一位置(图4-3-11),P点的x、y坐标都大于零,QP与x轴的夹角为时,OP在垂直于B方向上的有图3-2-11效长度为为OP在yPz平面上的投影OS与z轴的夹角。S点绕O点运动的速度为.O点的速度始终为零,所以OP上各点在y方向上的平均速度为vs/2。因此此时OP上的感生电动势的大小为.据此,可以延伸一下BPO图4-3-12例5、在如图4-3-12所示的直角作标系中,有一塑料制成的半锥角为的圆锥体Oab。圆锥体的顶点在原点处,其轴线沿z轴方向。有一条长为l的细金属丝OP固定在圆锥体的侧面上,金属丝与圆锥体的一条母线重合。整个空间中存在着磁感强度为B的均匀磁场,磁场方向沿X轴正方向,当圆锥体绕其轴沿图示方向做角度为的匀角速转动时,(1)OP经过何处时两端的电势相等?(2)OP在何处时P端的电势高于O端?(3)电势差的最大值是多少?BPOMN图4-3-13分析:本题的关键是如何处理磁感强度跟棒不垂直的问题。方法有二个:当金属丝OP经过XOZ平面时,设法求出极短时间内切割的磁感线数,即磁通量;或把B分解成跟OP垂直的分量和跟平OP行的分量B。解法一:(1)当OP经过YOZ平面的瞬间,两端的电势相等。因为此时OP的运动方向和磁场方向平行(同向或反向)(2)、只要OP处于YOZ平面的内侧,P点的电势总是高于O点。(3)、当OP处于XOZ平面的右侧且运动方向和磁场方向垂直时,即通过XOZ平面的瞬间(如图4-3-13所示)的值最大。其值等于在此瞬间很短时间间隔内,OP切割的磁感线数除以,由几何投影可知,也等于内OP在YOZ平面内的投影切割的磁感线的数目。P点在YOZ平面上的投影为沿Y轴做圆频率为、振幅为Lsin的简谐运动,此简谐运动在Z轴附近时其速度为。因此OP的投影切割的面积为一小三角形()的面积,即BPO图4-3-14切割磁感线数即磁通量为=B根据法拉第电磁感应定律可知=方法二:如图4-3-14所示,把磁感强度B正交分解成垂直OP的分量和平行于OP的分量,即 =Bsin当金属丝OP在匀强磁场中绕Z轴转动时,切割磁感线产生的电动势为E=Lv式中v的为金属丝OP中点的线速度,v=。代入上式得E=Bcos=由此得电势差=解法三:设想OP是闭合线框OO的一条边。线框绕OZ轴匀速转动产生的最大动生电动势为 E=BS)因为边O与OO没有切割磁感线,不产生动生电动势,因此OP中的电动势就等于闭合线框OO中的电动势。由此得电势差=解比较复杂的电路时,一般除了用到有关电磁感应知识以外,还要用到解复杂电路的回路电压定律和节点电流定律,请看下例:例6、如图4-3-15所示,一很长的薄导体平板沿x轴放置,板面位于水平位置,V图4-3-15板的宽度为L,电阻可忽略不计,aebcfd是圆弧形均匀导线,其电阻为3R,圆弧所在的平面与x轴垂直。圆弧的两端a和d与导体板的两个侧面相接触,并可在其上滑动。圆弧ae=eb=cf=fd=圆周长,圆弧bc=圆周长。一内阻R的体积很小的电压表位于圆弧的圆心O处,电压表的两端分别用电阻可以忽略的直导线与b和c点相连。整个装置处在磁感强度为B、方向竖直向上的匀强磁场中。当导体板不动而圆弧导线与电压表一起以恒定速度v沿x轴方向平移运动时。(1)求电压表的读数。VOL图4-3-16(2)求e点与f点的电势差。分析:怎样求出各段弧线导线(例如bc段)切割磁感线产生的动生电动势呢?可以设想在bc间连接一直导线,与bc间弧线导线构成一闭合回留,它们一起切割磁感线,都产生动生电动势,但回路中的总电动势为零,由此得到bc段弧线导线中的电动势等于bc间直导线中的电动势。用同样的“虚构”回路法,可以求出其他各段弧形导线中的动生电动势。然后根据右手定则判定各段弧线导线中动生电动势的方向。并画出如图4-3-16所示的等效电路,再运用一段含源电路的欧姆定律或基尔霍定律列方程,解出所求的未知数。V图4-3-17解: 当圆弧型导线和电压表的连线在磁场中运动时,各段导线都切割磁感线,都有感应电动势。由图4-3-17可以看出,弧bc段的感应电动势的大小E。弧ae段的感应电动势的大小。弧eb,cf,fd各段的感应电动势的大小都等于E。连接电压表的每根导线中的感应电动势的大小都为E。由以上分析,可得如图3-2-17所示的等效电路。设各导线中的电流分别为、和,方向如图所示,则有=-=-=2I以及注意到,得图3-2-16解式并将代入,得.电压表的读数2、e点与f点的电势差本题中涉及的电动势、电压和电势差3个概念,在本质上是不同的。5、2 交流电路521、交流电路(1)纯电阻电路 图5-2-1给电阻R加上一正弦交流电,如图5-2-1所示,其电压u为电流的瞬时值I与U、R三者关系仍遵循欧姆定律。 图5-2-2电流最大值,它们的有效值同样也满足在纯电阻电路中,u、i变化步调是一致的,即它们是同相,图5-2-2甲表示电流、电压随时间变化的步调一致特性。图乙是用旋转矢量法来表示纯电阻电路电流与电压相位关系。 (2)纯电感电路图5-2-3纯电感电路如图2-1-3所示,自感线圈中产生自感电动势为,电路中电阻R可近似为零,由含源电路欧姆定律有,所以,自感电动势与外加电压是反相的。 设电路中电流,自感电动势为由于很短,依三角关系展开上式后,近似处理,则为由得由上面可见:图5-2-4a.纯电感电路中电压电流关系: ,其中称为感抗()满足,其中,单位:欧姆。b.纯电感电路中,图5-2-4电压、电流相位关系是,电压超前电流 ,它们的图像和矢量表示如图5-2-5的甲、乙图所示。 图5-2-6图5-2-5(3)纯电容电路纯电容电路如图5-2-6所示,外加电压u,电容器反复进行充放电,设所加交变电压,与前面推导方式相同, 时间很短,得到则电路中电流有效值为I 图5-2-7称为电容的容抗,单位是欧姆。在纯电容电路中电流与电压的相位关系是:电流超前电压,图5-2-6甲、乙分别反应电流、电压随时间的变化图线和它们的矢量表示图。522位移电流位移电流不是电荷定向移动的电流。它引起的变化电场,极置于一种电流。为了形象地表明我移电流,可以把它看作是由极板上电荷积累过程即形成的。交流电能通过电容器,是由于电容器在充、放电的过程中,电容器极板上的电荷发生变化,引起电场的变化而形成的。连接电容器的导线中有传导电流通过,而在电容器内存在位移电流。我移电流在产生磁场效应上和传导电流完全等效,因为二者都都会在周围的空间产生磁场。我移电流通过介质时不会产生热效应。523、交流电路中的欧姆定律在交流电路中,电压、电流的峰值或有效值之间关系和直流电路中的欧姆定律相似,其等式为或,式中I、U都是交流电的有效值,Z为阻抗,该式就是交流电路中的欧姆定律。图5-2-8(2)说明由于电压和电流随元件不同而具有相位差,所以电压和电流的有效值之间一般不是简单数量的比例关系。a、在串联电路中,如图图5-2-8所示,以R、L、C为例,总电压不等于各段分电压的和,。因为电感两端电压相位超前电流相位电容两典雅电压相位落后电流相位。所以R、L、C上的总电压,决不是各个元件上的电压的代数和而是矢量和。以纯电阻而言, 以纯电感而言, 以纯电容而言,图5-2-9图5-2-10 合成的总电压。则,得。而电压和电流的相位差(图5-2-9)。b、在并联电路中,如图5-2-10所示,以R、L、C为例,每个元件两端的瞬时电压都相等为U。每分路的电流和两端电压之间关系为 , , 。不同元件上电流的相位也各有差异。纯电感上电流相位落后于纯电阻电流相位,纯电容上电流相位超前纯电阻电流相位。所以分电流的矢量和即总电流 令 得。524、交流电功率在交流电中电流、电压队随时间而变,因此电流和电压的乘积所表示的功率也将随时间而变。跟交流电功率有关的概念有:瞬时功率、有功功率、视在功率(又叫做总功率)、无功功率、以及功率因素。a瞬时功率。由瞬时电流和电压的乘积所表示的功率。,它随时间而变。在任意电路中,与u之间存在相位差。在纯电阻电路中,电流和电压之间无相位差,即,瞬时功率。b有功功率。用电设备平均每单位时间内所用的能量,或在一个周期内所用能量和时间的比。在纯电阻电路中,纯电阻电路中有功功率和直流电路中的功率计算方法表示完全一致,电压和电流都用有效值来计算。在纯电感电路中(电压超前电流),在纯电容电路中(电流超前电压), 以上说明电感电路或电容电路中能量只能在电路中互换,即电容与电源、电感与电源之间交换能量,对外无能量交换,所以它们的有功功率为零。对于一般电路的平均功率 c视在功率(S)。在交流电路中,电流和电压有效值的乘积叫做视在功率,即。它可用来表示用电器(发电机或变压器)本身所容许的最大功率(即容量)。图5-2-11d无功功率(Q)。在交流电路中,电流、电压的有效值与它们的相位差的正弦的乘积叫做无功功率,即。它和电路中实际消耗的功率无关,而只表示电容元件、电感元件和电源之间的能量交换的规模。有功功率,无功功率和视在功率之间的关系,可用如图3-1-74所示的所谓功率三角形来表示。e功率因数。发电机输送给负载的有功功率和视在功率的比, 。为了提高电能的可利用程度,必须提高功率因数,或者说减小相位差。525、涡流(1)定义或解释块状金属放在变化的磁场中,或让它在磁场中运动,金属地内有感应电场产生,从而形成闭合回路,这时在金属内所产生的感生电流自成闭合回路,形成旋涡,所以叫做涡电流。“涡电流”简称涡流,又叫傅科电流。(2)说明涡流的大小和磁通量变化率成正比,磁场变化的频率越高,导体里的涡流也越大。在导体中涡流的大小和电阻有关,电阻越大涡流越小。为了减小涡流造成的热损耗,电机和变压器的铁芯常采用多层彼此绝缘的硅钢片迭加而成(材料采用硅钢以增加电阻)。涡流也有可利用的一面。高频感应炉就是利用涡流作为自身加热用,感应加热,温度控制方便,热效率高,加热速度快,在生产生已用作金属的冶炼。在生活上也已被用来加热食品。涡流在仪表上也得到运用。如电磁阻尼,在磁电式测量仪表中,常把使指针偏转的线圈绕在闭合铝框上,当测量电流流过线圈时,铝框随线圈指针一起在磁场中转动,这时铝框内产生的涡流将受到磁场作用力,抑止指针的摆动,使指针较快地稳定在指示位置上。526、自感由于导体本身电流发生变化而产生电磁感应现象员做自感现象。导体回路由于自感现象产生的感生电动势叫做自感电动势,自感电动势的大小和电流的变化率成正比,。这是由于电流变化引起了回来中磁通量变化的缘故。式中比例常数L叫做自感系数。(2)单位在国际单位制中,自感系数的单位是亨利。(3)说明自感是导体本身阻碍电流变化的一制属性。对于一个线圈来说,自感系数的大小取决于线圈的匝数,直径、长度以及曲线芯材料等性质。在线圈直径远较线圈长度为小时,则(是圈线芯材料的导磁率,是线圈长度,N是线圈匝数,S是线圈横截面积)。自感现象产生的原因是当线圈中电流发生变化时,该线圈中将引起磁通量变化,从而产生感生电动势。因此,自感电动势的方向也可由楞次定律确定。当电流减小时,穿过线圈的磁通量也将减小,这时自感电动势的方向应和正在减小的电流方向一致,以障碍原电流的减小。同理,当线圈中电流增大时,则穿过线圈的磁通量也随着增大,因而有时将导体的自感现象与惯性现象作类比,它们都表现为对运动状态变化的障碍,所以自感现象又叫做电磁惯性现象。自感系数又叫做电磁惯量。这也可在能量关系上作一类比,电场能的公式为,那储藏在磁场里的能量公式为,因而L与C(电容)相当,I与U(电压)相当,自感系数L又可叫做电磁容量。但须注意,在线圈中被自感而产生电动势所障碍的是电流的变化,而不是阻碍电流本身。所以线圈中电流变化率越大则线圈两端阻碍电流变化的感生电动势值也越大。与电流的大小无直接关系。自感现象也可从能量守恒观点来解释。在自感电路里,接通直流电源,电流逐渐增加,在线圈内穿过的磁通量也逐渐增大,建立起磁场。在电流达到最大值前电源供给的能量将分成两部分,一部分消耗在线路的电阻上转变为热能;另一部分克服自感电动势做功,转化为磁场能。如果线路上热能损耗很小,可以忽略不计,那么在电流达到最大值前,电源供应的能量将全部转化为磁场能。当电流达到最大值时,磁场能也达到最大。当电流达到最大值稳定时,自感电动势不再存在,电源不再供给电能。自感系数不仅和线圈的几何形状以及密绕程度有关,而且还和线圈中放置铁芯或磁芯的性质有关,如果空心线圈的自感系数为,放置磁芯后,线圈的自感系数将增大倍,即,式中为磁芯的有效导磁率,它和磁芯材料的的相对导磁率有内在的联系。闭合的环形磁芯和数值相等。它们还和导体中工作电流的大小有关。和也有所区别。至于的大小还与磁芯材料的粗细、长短等几何形状有关,例如,对棒形铁芯或包含有空气隙的环形磁芯来说,。用的锰锌铁氧体材料制作的天线磁棒,其常常不到10。527、互感由于电路中电流的变化,而引起邻近另一电路中产生感电动势的现象叫做互感现象。导体由于互感现象,在次级线圈中产生感生电动势。感生电动势的大小和初级线圈中电流的变化率成正比,。式中的比例常数叫做互感系数。(2)单位在国际单位制中,互感系数的单位是亨利。(3)说明互感系数的大小和初、次级线圈的自感系数有关。当两个自感系数分别为L1和L2的线圈有闭合铁芯相连,而且初、次级线圈又耦合得十分紧密的情况下,即可看作是一种理想耦合。在理想耦合时互感系数。在一般情况下,两线圈之间不一定有铁芯相连,它们之间的磁耦合并不很紧密,其中某线圈中电流所激发的磁通量不全部通过另一线圈时,那么,k为耦合系数,它的物理意义是表示为磁耦紧密程度。K值和两线圈或回路的相对位置以及和周围的介质材料有关。对于k值的选取,由实际需要而定。如果要减小互感干扰,则选取较小的耦合系数;如果要加强互感,则选取较大的耦合系数。528、三相交流电三相交流电发电机原理如图5-2-1所示,其中AX、BY、CZ三组完全相同的线圈,它们排列在圆周上位置彼此差120。角度,当磁铁以角速度匀速转动时,每个线圈中都会产生一个交变电动势,它们位相彼此为,因而有图5-2-8图5-2-9(1)星形(Y型)连接的三相交流电源如图5-2-8所示,三相中每个线圈的头A、B、C分别引出三条线,称为端线(火线),而每相线圈尾X、Y、Z连接在一起,引出一条线,此线称为中线。因为总共接出四根导线,所以连接后的电源称为三相四线制。三相电源中,每相线圈中电流为相电流,端线中的电流为相电流,端线中的电流为线电流,每个线圈中电压为相电压,任意两条端线的电压为线电压。则线电压与相电压关系 所以相对有效值而言,有同理有:而星形连接后,相电流与线电流大小是一样的,即:(2)三角形(形)连接的三相电源如图5-2-9所示,它构成三相三线制电路。由图可知,在此情形下线电压等于相电压,但线电流与相电流是不相等的,若连接负载在对称平衡条件下,图5-2-10所以有:(3)三相交流电负载的星形和三角形连接如图5-2-10甲、乙所示,星形连接时,有,电流关系:若三相负载平衡。即,则有:,中线可省去,改为三相三线制。三相负载的三角形连接时,而负载上电流与线电流不等,当三相平衡时,线电流是相电流的倍。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸下载 > CAD图纸下载


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!