资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,专题五 几何综合题,专题五 几何综合题,1,例,1,(,2018,广东)如图,O是ABC的外接圆,BC是O的直径,ABC=30,求点B作O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作O的切线AF,与直径BC的延长线交于点F.,(1)求证ACFDAE;,(2)若S,AOC,=,,求DE的长;,(3)连接EF,求证:EF是O的切线.,例1(2018广东)如图,O是ABC的外接圆,BC是,2,(1)BC为O的直径,BAC=90,,又ABC=30,,ACB=60,,又OA=OC,,OAC为等边三角形,即OAC=AOC=60,,AF为O的切线,,OAF=90,,CAF=AFC=30,,DE为O的切线,,DBC=OBE=90,,D=DEA=30,,D=CAF,DEA=AFC,,ACFDAE;,(1)BC为O的直径,BAC=90,,3,(2)AOC为等边三角形,,S,AOC,=,,,OA=1,,BC=2,OB=1,,又D=BEO=30,,BD=,,BE=,,,DE=,;,(2)AOC为等边三角形,,4,(3)如图,过O作OMEF于M,,OA=OB,OAF=OBE=90,BOE=AOF,,OAFOBE,,OE=OF,,EOF=120,,OEM=OFM=30,,OEB=OEM=30,,即OE平分BEF,,又OBE=OME=90,,OM=OB,,EF为O的切线.,(3)如图,过O作OMEF于M,,5,1,(,2018,黔南州)如图,AB是O的直径,点D是,上一点,且BDE=CBE,BD与AE交于点F,(1)求证:BC是O的切线;,(2)若BD平分ABE,求证:DE,2,=DFDB;,(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长,题组训练,1(2018黔南州)如图,AB是O的直径,点D是 上,6,(1)证明:AB是O的直径,,AEB=90,EAB+ABE=90,,EAB=BDE,BDE=CBE,,CBE+ABE=90,即ABC=90,,ABBC,BC是O的切线;,(2)证明:BD平分ABE,,1=2,,而2=AED,,AED=1,,FDE=EDB,,DFEDEB,,DE:DF=DB:DE,,DE2=DFDB;,(1)证明:AB是O的直径,,7,(3)连结DE,如图,,OD=OB,,2=ODB,,而1=2,,ODB=1,,ODBE,,PODPBE,,=,,,PA=AO,,PA=AO=BO,,=,,即,=,,,PD=4,(3)连结DE,如图,,8,2,(,2018,包头)如图,在RtABC中,ABC=90,AB=CB,以AB为直径的O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交O于点G,DFDG,且交BC于点F,(1)求证:AE=BF;,(2)连接GB,EF,求证:GBEF;,(3)若AE=1,EB=2,求DG的长,2(2018包头)如图,在RtABC中,ABC=90,9,(1)证明:连接BD,,在RtABC中,ABC=90,AB=BC,,A=C=45,,AB为圆O的直径,,ADB=90,即BDAC,,AD=DC=BD=AC,CBD=C=45,,A=FBD,,DFDG,FDG=90,,FDB+BDG=90,,EDA+BDG=90,EDA=FDB,,又AD=BD,,AEDBFD(ASA),AE=BF;,(1)证明:连接BD,,10,(2)证明:连接EF,BG,,AEDBFD,,DE=DF,,EDF=90,,EDF是等腰直角三角形,,DEF=45,,G=A=45,,G=DEF,,GBEF;,(2)证明:连接EF,BG,,11,中考数学专题五几何综合题课件,12,3,(,2018,娄底)如图所示,在RtABC与RtOCD中,ACB=DCO=90,O为AB的中点,(1)求证:B=ACD,(2)已知点E在AB上,且BC,2,=ABBE,(i)若tanACD=,,BC=10,求CE的长;,(ii)试判定CD与以A为圆心、AE为半径的A的位置关系,并请说明理由,3(2018娄底)如图所示,在RtABC与RtOCD,13,解:(1)ACB=DCO=90,,ACBACO=DCOACO,,即ACD=OCB,,又点O是AB的中点,,OC=OB,,OCB=B,,ACD=B,,(2)(i)BC,2,=ABBE,,=,,,B=B,,ABCCBE,,ACB=CEB=90,,ACD=B,,解:(1)ACB=DCO=90,,14,ABCCBE,,ACB=CEB=90,,ACD=B,,tanACD=tanB=,,,设BE=4x,CE=3x,,由勾股定理可知:BE,2,+CE,2,=BC,2,,,(4x),2,+(3x),2,=100,,解得x=2,,CE=6;,ABCCBE,,15,(ii)过点A作AFCD于点F,,CEB=90,,B+ECB=90,,ACE+ECB=90,,B=ACE,,ACD=B,,ACD=ACE,,CA平分DCE,,AFCE,AECE,,AF=AE,,直线CD与A相切,(ii)过点A作AFCD于点F,,16,4,(,2018,德州)如图,O是ABC的外接圆,AE平分BAC交O于点E,交BC于点D,过点E做直线lBC,(1)判断直线l与O的位置关系,并说明理由;,(2)若ABC的平分线BF交AD于点F,求证:BE=EF;,(3)在(2)的条件下,若DE=4,DF=3,求AF的长,4(2018德州)如图,O是ABC的外接圆,AE平分,17,解:(1)直线l与O相切,理由:如图1所示:连接OE、OB、OC,AE平分BAC,,BAE=CAE,BOE=COE,又OB=OC,,OEBC,lBC,,OEl,直线l与O相切,解:(1)直线l与O相切,18,(2)BF平分ABC,,ABF=CBF,又CBE=CAE=BAE,,CBE+CBF=BAE+ABF,又EFB=BAE+ABF,,EBF=EFB,BE=EF,(3)由(2)得BE=EF=DE+DF=7,DBE=BAE,DEB=BEA,,BEDAEB,,即,,解得;AE=,AF=AEEF=,7=,(2)BF平分ABC,,19,5,(2018,甘孜州)如图,在ABC中,AB=AC,以AB为直径的O与边BC,AC分别交于D,E两点,过点D作DHAC于点H,(1)判断DH与O的位置关系,并说明理由;,(2)求证:H为CE的中点;,(3)若BC=10,cosC=,,求AE的长,5(2018甘孜州)如图,在ABC中,AB=AC,以A,20,(1)解:DH与O相切理由如下:,连结OD、AD,如图,,AB为直径,,ADB=90,即ADBC,,AB=AC,,BD=CD,,而AO=BO,,OD为ABC的中位线,,ODAC,,DHAC,,ODDH,,DH为O的切线;,(1)解:DH与O相切理由如下:,21,(2)证明:连结DE,如图,,四边形ABDE为O的内接四边形,,DEC=B,,AB=AC,,B=C,,DEC=C,,DHCE,,CH=EH,即H为CE的中点;,(2)证明:连结DE,如图,,22,中考数学专题五几何综合题课件,23,6,(2018,鄂州)如图,在RtABC中,ACB=90,AO是ABC的角平分线以O为圆心,OC为半径作O,(1)求证:AB是O的切线,(2)已知AO交O于点E,延长AO交O于点D,tanD=,求,的值,(3)在(2)的条件下,设O的半径为3,求AB的长,6(2018鄂州)如图,在RtABC中,ACB=90,24,(1)如图,过点O作OFAB于点F,,AO平分CAB,,OCAC,OFAB,,OC=OF,,AB是O的切线;,(1)如图,过点O作OFAB于点F,,25,(2)如图,连接CE,,ED是O的直径,ECD=90,,ECO+OCD=90,,ACB=90,ACE+ECO=90,,ACE=ODC,,OC=OD,OCD=ODC,,ACE=ODC,,CAE=CAE,,ACEADC,,=,,,tanD=,,,=,=,,,(2)如图,连接CE,,26,中考数学专题五几何综合题课件,27,巩固练习,巩固练习,28,1,如图,,AB,是,O,的直径,点,C,为,O,上一点,,AE,和过点,C,的切线互相垂直,垂足为,E,,,AE,交,O,于点,D,,直线,EC,交,AB,的延长线于点,P,,连接,AC,,,BC,,,PB,:,PC=1,:,2,(,1,)求证:,AC,平分,BAD,;,(,2,)探究线段,PB,,,AB,之间的数量关系,并说明理由;,(,3,)若,AD=3,,求,ABC,的面积,1如图,AB是O的直径,点C为O上一点,AE和过点C的,29,(,1,)证:连接,OC,,,PE,是,O,的切线,,OCPE,,,AEPE,,,OCAE,,,DAC=OCA,,,OA=OC,,,OCA=OAC,,,DAC=OAC,,,AC,平分,BAD,;,(,2,)线段,PB,,,AB,之间的数量关系为:,AB=3PB,理由:,AB,是,O,的直径,,ACB=90,,,BAC+ABC=90,,,OB=OC,,,OCB=ABC,,,PCB+OCB=90,,,PCB=PAC,,,P,是公共角,,PCBPAC,,,(1)证:连接OC,(2)线段PB,AB之间的数量关系为:A,30,PC,2,=,PB,PA,,,PB,:,PC,=1,:,2,,,PC,=2,PB,,,PA,=4,PB,,,AB,=3,PB,;,(,3,)解:过点,O,作,OH,AD,于点,H,,则,AH,=,AD,=,,四边形,OCEH,是矩形,,OC=HE,,,AE=+OC,,,OCAE,,,PCOPEA,,,AB=3PB,,,AB=2OB,,,OB=PB,,,OC=,AB=5,,,OC=HE,,31,PBC,PCA,,,AC,=2,BC,,,在,Rt,ABC,中,,AC,2,+,BC,2,=,AB,2,,,(2,BC,),2,+,BC,2,=5,2,,,BC,=,AC,=,S,ABC,=,AC,BC,=5,PBCPCA,,32,2,如图,四边形,ABCD,是,O,的内接正方形,,AB=4,,,PC,、,PD,是,O,的两条切线,,C,、,D,为切点,(,1,)如图,1,,求,O,的半径;,(,2,)如图,1,,若点,E,是,BC,的中点,连接,PE,,求,PE,的长度;,(,3,)如图,2,,若点,M,是,BC,边上任意一点,(,不含,B,、,C),,以点,M,为直角顶点,在,BC,的上方作,AMN=90,,交直线,CP,于点,N,,求证:,AM=MN,2如图,四边形ABCD是O的内接正方形,AB=4,PC、,33,解:(,1,)如图,1,,连接,OD,,,OC,,,PC,、,PD,是,O,的两条切线,,C,、,D,为切点,,ODP=OCP=90,四边形,ABCD,是,O,的内接正方形,,DOC=90,,,OD=OC,,,四边形,DOCP,是正方形,,AB=4,,,ODC=OCD=45,,,DO=CO=DCsin45=,4=,;,(,2,)如图,1,,连接,EO,,,OP,,,点,E,是,BC,的中点,,OEBC,,,OCE=45,则,E0P=90,,,EO=EC=2,,,OP=CO=4,,,解:(1)如图1,连接OD,OC,ODC=OCD=45,34,PE=,(,3,)证:如图,2,,在,AB,上截取,BF=BM,,,AB=BC,,,BF=BM,,,AF=MC,,,BFM=BMF=45,,,AMN=90,,,AMF+NMC=45,,,FAM+AMF=45,,,FAM=NMC,,,由,(1),得:,PD=PC,,,DPC=90,,,DCP=45,,,MCN=135,,,AFM=180BFM=135,,,PE=,35,
展开阅读全文