资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,11/7/2009,#,返回,三角形的分类,三角形的分类,平行四边形、梯形和三角形,情境导入,探究新知,课堂练习,课堂小结,课后作业,三角形的分类平行四边形、梯形和三角形情境导入探究新知课堂练,下面有,6,个三角形。先量一量每个三角形三个内角的度数,再按照角的特点把三角形分类。,下面有6个三角形。先量一量每个三角形三个内角的度数,再按照角,用量角器量每个三角形三个角的度数,数数每个三角形中锐角、直角、钝角的个数分别是几。,1.,量一量,填一填。,三角形编号,1,2,3,4,5,6,锐角个数,直角个数,钝角个数,3,3,2,1,3,1,2,1,2,用量角器量每个三角形三个角的度数,数数每个三角形中锐角、直角,怎么给这些三角形分类呢?,锐角三角形,三个角都是锐角,一个直角,两个锐角,直角三角形,一个钝角,两个锐角,钝角三角形,2.,三角形分类。,怎么给这些三角形分类呢?锐角三角形三个角都是锐角一个直角,小提示:,每个三角形中都至少有两个锐角,另外一个角是锐角、直角、钝角中的一个。,所以三角形可以这样分类!,小提示:每个三角形中都至少有两个锐角,另外一个角是锐角、直,猜一猜。,例,1,下面的三个纸袋里各有一个三角形,都有一个角漏在纸袋外,你能猜出它们分别是什么三角形吗?,猜一猜。例 1下面的三个纸袋里各有一个三角形,都有一个角漏在,什么是等腰三角形?它有什么特点,?,3.,认识等腰三角形和等边三角形。,按要求完成课本,56,页“量一量,填一填”,然后回答下面的问题。,什么是等边三角形?它有什么特点,?,等边三角形与等腰三角形有什么关系,?,什么是等腰三角形?它有什么特点?3.认识等腰三角形和等边三角,两条边相等的三角形叫作,等腰三角形。,三条边都相等的三角形叫作,等边三角形。,等边三角形是特殊的等腰三角形。,顶角,底角,底角,腰,腰,等腰三角形,边,边,边,等边三角形(正三角形),两条边相等的三角形叫作等腰三角形。三条边都相等的三角形叫作等,你能用一张纸只剪一刀剪出一个等腰三角形吗?如果能,说说其中的奥秘。,等腰三角形和等边三角形都是轴对称图形,等,腰三角形有一条对称轴,等边三角形有,3,条对,称轴。,你能用一张纸只剪一刀剪出一个等腰三角形吗?如果能,说说其中的,1.,在下面的点子图上分别画一个直角三角形、等腰三角形和等边三角形。,1.在下面的点子图上分别画一个直角三角形、等腰三角形和等边三,2.,等腰三角形的一个底角是,40,它的顶角是多少度,?,等腰三角形中,两个底角相等,已知一个底角是,40,可以用,402,得到两个底角的和,再用,180,减去两个底角的和,得到的就是顶角的度数。,180,402=100,2.等腰三角形的一个底角是40,它的顶角是多少度?等腰三角,3.,把下面的三角形分类,用线连一连。,直角三角形锐角三角形钝角三角形,3.把下面的三角形分类,用线连一连。直角三角形锐角三角,8.黯然失色:阴暗而失去本来的色彩。,3.书信有关常识:,(2)抓住早春特点,从仰视角度描写禽鸟(动物)的优美诗句是:几处早莺争暖树,谁家新燕啄春泥。,2.长途跋涉:指远距离的翻山渡水;形容路途遥远,行路辛苦。跋涉,翻山越岭,趟水过河,(4)诗人为早春胜景所吸引流连忘返的一句:最爱湖东行不足,绿杨阴里白沙堤。,5.入木三分:形容书法刚劲有力;形容议论、见解深刻;此处形容目光犀利。,(2)议论文三要素:,(2)化静为动,表现雄浑开阔的意境的诗句是:山随平野尽,江入大荒流。,(2)抓住早春特点,从仰视角度描写禽鸟(动物)的优美诗句是:几处早莺争暖树,谁家新燕啄春泥。,纵横决荡:纵横驰骋,冲杀突击。,(4)借用典故抒发誓死报国忠心的诗句是:报君黄金台上意,提携玉龙为君死。,(4)王绩在野望中引用典故,追古怀伤,表现诗人孤独抑郁心情的句子是:相顾无相识,长歌怀采薇。,4.,在下面的等边三角形中,1=2,3=4,求,5,的度数。,思路分析,:,大三角形是等边三角形,每个内角都是,60,1=2,3=4,1=2=3=4=30,8.黯然失色:阴暗而失去本来的色彩。4.在下面的等边三角形中,4.,在下面的等边三角形中,1=2,3=4,求,5,的度数。,5=180-(2+3)=120,4.在下面的等边三角形中,1=2,3=4,求5的度,三角形按角可以分为锐角三角形、直角三角形、钝角三角形。,有两条边相等的三角形是等腰三角形,三边都相等的三角形是等边三角形。,等腰三角形和等边三角形都是轴对称图形,前者只有一条对称轴,后者有三条对称轴。,这节课你有什么收获?你还有什么问题?,三角形按角可以分为锐角三角形、直角三角形、钝角三角形。这节课,
展开阅读全文