资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,2021 年“精 英 杯,全国公开课大赛,获奖作品展示,教育部“精英杯公开课大赛简介,2021年6月,由教育学会牵头,教材编审委员会具体组织实施,在全国8个城市,设置了12个分会场,范围从“小学至高中全系列部编新教材进行了统一的培训和指导。每次指導,都輔以精彩的優秀示範課。在這些示範課中,不乏全國名師和各省名師中的佼佼者。,他们的课程,无论是在内容和形式上,都是经过认真研判,把各学科的核心素养作为教学主线。既涵盖城市中小学、又包括乡村大局部学校的教学模式。適合全國大局部教學大區。本課件就是從全國一等獎作品中,优选出的具有代表性的作品。示范性强,有很大的推广价值。,8.3 角的度量2,一、补角与余角的定义,如果两个角的和是90,就说这两个角互为余角,简称“互余,其中一个角叫做另一个角的余角。,如果两个角的和是180,那么这两个角互为补角,简称“互补,其中一个角叫做另一个角的补交。,解:设这个角的度数为x,那么它的余角为(x),补角为(x),依题意,得(x)x,解得x,所以这个角的度数为,解:,因为是的余角,且,所以,因为是的补角,且,所以,练一练,1,、一个角的余角的倍比这个角的补角小,求这个角的度数,2、是的余角,是的补角,且,求,的大小,1,2,3,证明:,余角的定义,余角的定义,同角的余角相等,4、是的余角,是的补角,且,求,的大小,解:,因为是的余角,且,所以,因为是的补角,且,所以,3、AOC=BOD=90,求证:=。,二、余角与补角的性质,余角的性质:同角或等角的余角相等,补角的性质:同角或等角的补角相等,1,2,3,证明:,余角的定义,余角的定义,同角的余角相等,练一练,1,、,证明:,平角的定义,等式的性质,等角的余角相等,余角的定义,2,、,3,、如图,3,与,4,互补,4,与,5,互补,那么,3,与,5,相等吗,?,为什么,?,3,4,5,解,:,因为,3+4=180,5+4=180,,,所以,3=5.,同角的补角相等,,补角的定义,补角的定义,4、如图,1与2互补,3与4互补,假设1=3,那么2与4相等吗?为什么?,2,1,3,4,解,:,因为,1+2=180,o,,,3+4=180,,,1=3,,,等角的补角相等,补角的定义,补角的定义,所以,2=4.,小结:,余角:假设1+2=90,那么12是21的余角;,补角:假设1+2=180,那么12是21的补角;,同角或等角的余角相等;,同角或等角的补角相等,.,稳固练习,1、和 互为余角,那么两角的补角之和是(),A B C D,C,2,、如图,点A,O,B 在同一条直线上,AOD DOBCOE,()图中的余角有,的余角有,.,()图中相等的锐角有,.,平方根、立方根,第,6,章 实 数,导入新课,讲授新课,当堂练习,课堂小结,2.,立方根,七年级数学下HK,教学课件,情境引入,学习目标,1.了解立方根的概念,会用根号表示一个数的立方根.重点,2.能用开立方运算求某些数的立方根,了解开立方和,立方互为逆运算.重点,难点,导入新课,某化工厂使用半径为,1,米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的,8,倍,那么它的半径应是原来储气罐半径的多少倍?,情境引入,讲授新课,立方根的概念及性质,一,问题:要做一个体积为27cm3的正方体模型如图,它的棱长要取多少?你是怎么知道的?,解:设正方体的棱长为x,那么,这就是要求一个数,使它的立方等于,27.,因为,所以,x,=3.,正方体的棱长为,3.,想一想,(1),什么数的立方等于,-8,?,(2),如果问题中正方体的体积为,5,cm,3,,正方体的边长又该是多少?,-2,立方根的概念,一般地,一个数的立方等于,a,,这个数就叫做,a,的立方根,也叫做,a,的三次方根记作,.,立方根的表示,一个数,a,的立方根可以表示为,:,根指数,被开方数,其中,a,是被开方数,,3,是根指数,,3,不能省略,.,读作,:,三次根号,a,,,填一填:,根据立方根的意义填空:,因为,=8,,所以,8,的立方根是();,因为()3=0.125,所以的立方是 ;,因为()3 0,所以0的立方根是;,因为 ()3 8,所以8的立方根是 ;,因为,(,),3,,所以 的立方(),.,0,2,-2,0,-2,立方根的性质,一个正数有一个正的立方根;,一个负数有一个负的立方根,,零的立方根是零.,立方根是它本身的数有,1,-1,0,;,平方根是它本身的数,只有,0.,知识要点,平方根与立方根的异同,被开方数,平方根,立方根,有两个互为相反数,有一个,是正数,无平方根,零,有一个,是负数,零,正数,负数,零,开立方及相关运算,二,a,叫做被开方数,3叫做根指数,每个数a都有一个立方根,记作 ,读作“三次,根号a.如:x3=7时,x是7的立方根,求一个数,a,的立方根的运算叫做开立方,,a,叫做被开方数,注意:这个根指数3绝对不可省略.,求一个数的立方根的运算叫作“开立方.,“开立方与“立方互为逆运算,逆向思维,与学习开平方运算的过程一样,表达着一种重要的数学思想方法,你有体会了么?,典例精析,例1 求以下各数的立方根:,1,2,3,4,5,(5)-5,的立方根是,3,40.216;,55.,求以下各式的值:,体会:对于任何数,a,a,2,4,0,-2,-3,探究,1,3,3,2 _,=,3,3,4 _,=,温馨提示:开立方与立方运算互为逆运算,.,体会:对于任何数,a,a,8,27,0,-,8,-,27,探究,2,求以下各式的值:,体会:,(1)求一个负数的立方根,可以先求出这个负数绝对值的立方根,然后再取它的相反数.,(2)负号可从“根号内 直接移到“根号外.,求以下各式的值:,(1),;,(2),探究,3,-,-,求以下各数的值:,10.5,24,34,45,516.,练一练,例2 求以下各式的值:,例3 x2 的平方根是2,2xy7的立方根是3,求x2y2的算术平方根,方法总结:此题先根据平方根和立方根的定义,运用方程思想求出x,y值,再根据算术平方根的定义求解,解,:,x,2的平方根是2,,x,24,,x,6.,2,x,y,7的立方根是3,,2,x,y,727.,把,x,6代入,解得,y,8.,x,2,y,2,6882100,,x,2,y,2,的算术平方根为10.,例3 用计算器求以下各数的立方根:343,-1.331.,解:,依次按键:,显示:,7,所以,,2ndF,4,3,3,=,依次按键:,显示:,-1.1,所以,,2ndF,1,(-),.,3,1,3,=,用计算器求立方根,三,例4 用计算器求 的近似值精确到.,解:,依次按键:,显示:,1.259 921 05,所以,,2ndF,=,2,(),当堂练习,1.判断以下说法是否正确.,(2),任何数的立方根都只有一个,;,(),(3),如果一个数的立方根是这个数本身,那么这个数一定是零,;,(),(5)0,的平方根和立方根都是,0.(),(1)25,的立方根是,5;(),(4),一个数的立方根不是正数就是负数,;,2.求以下各式的值,解:1,2,3,3.求以下各式的值:,2,4.,将体积分别为,600 cm,3,和,129 cm,3,的长方体铁块,熔成一个正方体铁块,那么这个正方体的棱长是多少?,解,:,因为,600+129=729,,,729,的立方根是,9,,,所以正方体的棱长为,9 cm.,解:一个数的立方根等于它本身的数有0,1,1.,当1a20时,a21,那么a1;,当1a21时,a20,那么a0;,当1a21时,a22,那么a .,5.,已知 ,求,a,的值,立方根,立方根的概念及性质,课堂小结,开立方及相关运算,
展开阅读全文