资源描述
2 视图,2 视图,在生活中我们应从不同角度、多方面地去看待一个事物,分析一件事情,数学中我们只从三个不同方向看同一物体,所以,每一个物体都有,三视图,在生活中我们应从不同角度、多方面地去看待一个事物,分,左视图,从左面看到的图,用小正方体搭建一个几何体,:,主视图,从正面看到的图,你能画出这个几何体的,三视图,吗?,【,定义,】,左视图用小正方体搭建一个几何体:主视图你能画出这个几何体的三,画一个物体的三视图时,主视图,左视图,俯视图所画的位置如图所示,且要符合如下原则,:,长对正,高平齐,宽相等,.,长,高,宽,画一个物体的三视图时,主视图,左视图,俯视图所画的位置如图所,圆柱,圆锥,球,下面各图中物体形状分别可以看成什么样的几何体,?,从正面,侧面,上面看这些几何体,它们的形状各是什么样的,?,正面看,:,长方形 等腰三角形 圆,侧面看,:,长方形 等腰三角形 圆,上面看,:,圆 圆及圆心 圆,你,能画出各物体的三视图吗,?,圆柱圆锥球下面各图中物体形状分别可以看成什么样的几何体?从正,几何体,主视图,左视图,俯视图,上述物体的形状分别可以看成圆柱、圆锥和球,它们的三种视图如下表所示:,几何体主视图左视图俯视图上述物体的形状分别可以看成圆柱、圆锥,下图是一个蒙古包的照片小明认为这个蒙古包可以看成右图所示的几何体,你同意小明的看法吗?请你画出这个几何体的三种视图,试一试,下图是一个蒙古包的照片小明认为这个蒙古包可以看成右图所示的,主视图,左视图,俯视图,主视图左视图俯视图,探索实践,你能想象出这个正三棱柱的主视图、左视图和俯视图吗?你能画出它们吗?,底面为正多边形的直棱,柱称为正棱柱。,正三棱柱就是底面为正,三角形的直棱柱。,正五棱柱就是底面为正,五边形的直棱柱。,探索实践你能想象出这个正三棱柱的主视图、左视图和俯视图吗?你,2.,小亮画出了这个几何体的三视图,你同意他的画法吗?讨论一下,2.小亮画出了这个几何体的三视图,你同意他的画法吗?讨论一下,3.,你所画的主视图与俯视图中有哪些部分对应相等?主视图与左视图中有哪些部分对应相等?左视图与俯视图呢?,3.你所画的主视图与俯视图中有哪些部分对应相等?主视图与左视,这种画法对吗?,你能把它改过来吗?,错在哪呢?,主视图中漏画一条看不见的棱;,左视图,的宽与主视图的长不应该相等,.,想一想,这种画法对吗?你能把它改过来吗?错在哪呢?主视图中漏画一条,画视图时,看得见部分的轮廓线为实线,看不见部分的轮廓线画为虚线,.,主视图,左视图,俯视图,画视图时,看得见部分的轮廓线为实线,看不,你能画出它们的主视图、左视图、俯视图吗?,【,例题,】,你能画出它们的主视图、左视图、俯视图吗?【例题】,【,规律方法,】,在画图时,看见的部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,.,主,视,图,左,视,图,俯,视,图,四棱柱,【规律方法】在画图时,看见的部分的轮廓线通常画成实线,看不见,1.,下图是底面为等腰直角三角形的三棱柱的俯视图,尝试画出它的主视图和左视图,并与同伴交流,.,俯视图,(1),俯视图,(2),主视图,左视图,左视图,主视图,【,跟踪训练,】,1.下图是底面为等腰直角三角形的三棱柱的俯视图,尝试画出它的,已知某四棱柱的俯视图如图所示,尝试画出它的主视图和左视图,并与同伴交流.,俯视图,主视图,左视图,已知某四棱柱的俯视图如图所示,尝试画出它的主视图和左,1.,找出图中每一物品所对应的主视图:,1.找出图中每一物品所对应的主视图:,茶,D,2.,将两个圆盘、一个茶叶桶、一个足球和一个蒙古,包以如图的方式摆放在一起,其主视图是(),茶D2.将两个圆盘、一个茶叶桶、一个足球和一个蒙古,主,视,图,左,视,图,俯,视,图,3.,画出下面几何体的三视图:,主左俯3.画出下面几何体的三视图:,左,视,图,主,视,图,俯,视,图,4.,画出下面几何体的三视图:,左主俯4.画出下面几何体的三视图:,1.,三视图,主视图,从正面看到的图,左视图,从左面看到的图,俯视图,从上面看到的图,2.,画物体的三视图时,要符合如下原则,:,位置:,主视图,左视图,俯视图,大小:长对正,高平齐,宽相等,.,3.,在画图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,.,1.三视图,
展开阅读全文