资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,22.3,实际问题与一元二次方程(三),面积问题,复习:,列方程解应用题有哪些步骤,对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程解应用题。,上一节,我们学习了解决,“,平均,增长,(,下降,),率问题,”,,现在,我们要学习解决,“,面积、体积问题,。,一、复习引入,1,直角三角形的面积公式是什么?,一般三角形的面积公式是什么呢?,2,正方形的面积公式是什么呢?,长方形的面积公式又是什么?,3,梯形的面积公式是什么?,4,菱形的面积公式是什么?,5,平行四边形的面积公式是什么?,6,圆的面积公式是什么?,要设计一本书的封面,封面长,27,宽,21,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度,?,27,21,探究,3,分析,:,这本书的长宽之比是,9:7,依题知正中央的,矩形两边之比也为,9:7,解法一,:,设正中央的矩形两边分别为,9xcm,,,7xcm,依题意得,解得,故上下边衬的宽度为,:,左右边衬的宽度为,:,分析,:,这本书的长宽之比是,9:7,正中央的矩形两边之比也为,9:7,由此判断上下边衬与左右边衬的宽度之比也为,9:7,解法二,:,设上下边衬的宽为,9xcm,,左右边衬宽为,7xcm,依题意得,解方程得,方程的哪个根合乎实际意义,?,为什么,?,例,1.,学校为了美化校园环境,在一块长,40,米、宽,20,米的长方形空地上计划新建一块长,9,米、宽,7,米的长方形花圃,.,(,1,)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多,1,平方米,请你给出你认为合适的三种不同的方案,.,(,2,)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加,2,平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由,.,应用,解,:(1),方案,1,:长为 米,宽为,7,米,;,方案,2,:长为,16,米,宽为,4,米,;,方案,3,:长,=,宽,=8,米,;,注:本题方案有无数种,(,2,)在长方形花圃周长不变的情况下,长方形花圃面积不能增加,2,平方米,.,由题意得长方形长与宽的和为,16,米,.,设长方形花圃的长为,x,米,则宽为(,16-,x,)米,.,x,(16-,x,)=63+2,,,即,x,2,-16,x,+65=0,,,此方程无解,.,在周长不变的情况下,长方形花圃的面积不能增加,2,平方米,1,、用,20cm,长的铁丝能否折成面积为,30cm,2,的矩形,若能够,求它的长与宽,;,若不能,请说明理由,.,解,:,设这个矩形的长为,x,cm,则宽为,cm,即,x,2,-10 x+30=0,这里,a=1,b=,10,c=30,此方程无解,.,用,20cm,长的铁丝不能折成面积为,30cm,2,的矩形,.,练习,2,:,某校为了美化校园,准备在一块长,32,米,宽,20,米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案,(,如图,),根据两种设计方案各列出方程,求图中道路的宽分别是多少,?,使图,(1),(2),的草坪,面积,为,540,米,2,.,(1),(2),(1),解,:(1),如图,设道路的宽为,x,米,则,化简得,,其中的,x=25,超出了原矩形的宽,应舍去,.,图,(1),中,道路的宽为,1,米,.,则横向的路面面积为,,,分析:此题的相等关系是矩形面积减去道路面积等于,540,米,2,。,解法一、如图,设道路的宽为,x,米,,32x,米,2,纵向的路面面积为,。,20 x,米,2,注意:这两个面积的重叠部分是,x,2,米,2,所列的方程是不是,图中的道路面积不是,米,2,。,(2),而是从其中减去重叠部分,即应是,米,2,所以正确的方程是:,化简得,,其中的,x=50,超出了原矩形的长和宽,应舍去,.,取,x=2,时,道路总面积为:,=100(,米,2,),草坪面积,=,=540,(米,2,),答:所求道路的宽为,2,米。,解法二:,我们利用,“,图形经过移动,它的面积大小不会改变,”,的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),(2),(2),横向路面,,,如图,设路宽为,x,米,,32x,米,2,纵向路面面积为,。,20 x,米,2,草坪矩形的长(横向)为,,,草坪矩形的宽(纵向),。,相等关系是:草坪长,草坪宽,=540,米,2,(20-x),米,(,32-x),米,即,化简得:,再往下的计算、格式书写与解法,1,相同。,3.,如图是宽为,20,米,长为,32,米的矩形耕地,要修筑同样宽的三条道路,(,两条纵向,一条横向,且互相垂直,),把耕地分成六块大小相等的试验地,要使试验地的面积为,570,平方米,问,:,道路宽为多少米,?,解,:,设道路宽为,x,米,,则,化简得,,其中的,x=35,超出了原矩形的宽,应舍去,.,答,:,道路的宽为,1,米,.,4.,如图,长方形,ABCD,AB=15m,BC=20m,四周外围环绕着宽度相等的小路,已知小路的面积为,246m,2,求小路的宽度,.,A,B,C,D,解,:,设小路宽为,x,米,,则,化简得,,答,:,小路的宽为,3,米,.,1.,如图(,1,),宽为,50cm,的矩形图案由,10,个全等的小长方形拼成,则每个小长方形的面积为,【】,A,400cm,2,B,500cm,2,C,600cm,2,D,4000cm,2,2.,在一幅长,80cm,,宽,50cm,的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图(,2,)所示,如果要使整个挂图的面积是,5400cm2,,设金色纸边的宽为,x,cm,,那么,x,满足的方程是,【】,A,x,2,+130,x,-1400=0 B,x,2,+65,x,-350=0,C,x,2,-130,x,-1400=0 D,x,2,-65,x,-350=0,80cm,x,x,x,x,50cm,A,B,图(,1,),图(,2,),补充练习,3.,如图,面积为,30m,2,的正方形的四个角是面积为,2m,2,的小正方形,用计算器求得,a,的长为(保留,3,个有效数字),【】,A,2.70m B,2.66m C,2.65m D,2.60m,C,a,4,如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为,35m,,所围的面积为,150m,2,,则此长方形鸡场的长、宽分别为,_,图(,3,),图(,4,),这里要特别注意,:,在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求,列一元二次方程解应用题的步骤与列一元一次,方程解应用题的步骤类似,,即,审、设、列、解、检、答,小结,
展开阅读全文