资源描述
,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,小结与复习,第六章 实 数,小结与复习第六章 实 数,正,知识网络,乘方,开方,平方根,立方根,开平方,开立方,互为逆运算,算术平方根,实数,有理数,无理数,运算,正知识网络乘方开方平方根立方根开平方开立方互为逆运算算术平方,专题复习,【,例,1,】1.,求下列各数的平方根:,2.,求下列各数的立方根:,【,归纳拓展,】,解题时,要注意题目的要求,是求平方根、立方根还是求算术平方根,.,专题一 开方运算,专题复习【例1】1.求下列各数的平方根:2.求下列各数的立方,【,迁移应用1,】,求下列各式的值:,答案:,20;,;,;,.,【迁移应用1】求下列各式的值:答案:20;,【,例2,】,在,-,7.5,,4,中,无理数的个数是(),A.1,个,B.2,个,C.3,个,D.4,个,【,归纳拓展,】,对实数进行分类不能只看表面形式,应先化简,再根据结果去判断,.,B,专题二 实数的有关概念,【例2】在-7.5,,4,【,迁移应用,2,】,(,1,),在,-,,,0.618,,中,,负有理数的个数是(),A.1,个,B.2,个,C.3,个,D.4,个,A,A.1,个,B.2,个,C.3,个,D.4,个,(,2,),下列实数 ,,3.14159,,,,,-,中,正分数的个数是(),B,【,注意,】,,,等不属于分数,而是无理数,.,【迁移应用2】(1)在-,0.618,中,【,例,3】,(1),位于整数,和,之间,.,(2),实数,a,b,在数轴上的位置如图所示,化简,=,.,a,0,b,-,2,a,【,归纳拓展,】,1.,实数与数轴上的点是一一对应的关系;,2.,在数轴上表示的数,右边的数总是比左边的数大,.,专题三 实数的估算及与数轴的结合,4,5,【例3】(1)位于整数 和,【,迁移应用,3,】,如图所示,数轴上与,1,,,对应的点分别是为,A,、,B,,,点,B,关于点,A,的对称点为,C,设点,C,表示的数为,x,则,=,.,0,1,2,B,C,A,【迁移应用3】如图所示,数轴上与1,对应的点分别是为A,【,例,4,】,(,1),(,2,),60,y,-,1,【,例,5,】,已知,,,则,=,,,=,.,0.08138,37.77,【,例,6,】,计算,:,=,.,专题四 实数的运算,【,归纳拓展,】,开立方运算时要注意小数点的变化规律,开立方是三位与一位的关系,开平方是二位与一位的关系,.,【例4】(1),【,迁移应用,4】,计算:,答案,:(,1,),5.79,;(,2,),5.48,【迁移应用4】计算:答案:(1)5.79;(2)5.48,课堂小结,1,.,通过对本章内容的复习,你认为平方根和立方根之,间有怎么样的区别与联系?,2,.,什么是实数?,3,.,实数的运算法则与有理数的运算法则有什么联系?,课堂小结1.通过对本章内容的复习,你认为平方根和立方根之2.,课后训练,1.,写出两个大于,1,小于,4,的无理数,_,、,_.,2.,的整数部分为,_,小数部分为,_ _,.,3.,一个立方体的棱长是,4,cm,,如果把,它体积扩大为,原来的,8,倍,则扩大后的立方体的表面积是,_.,3,课后训练 1.写出两个大于1小于4的无理数_、_,4.,求下列各式中的,x,.,(,1,),(,x,-,1),2,=64,;,(,2,),(,x,=9,或,-,7 ),(,x,=,-,18),4.求下列各式中的x.(1)(x-1)2=64;,5.,比较大小:与,.,解:,(,-,2+),-,(,-,2+)=,-,2+2,-,=,-,0,-,2+,-,2+,另解:直接由正负决定,-,2+,-,2+,5.比较大小:与 .解:(-,6,.,若,求,-,ab,的平方根,.,解:,3,a,+4,0,且,(4,b,-,3),2,0,而,3,a,+4,+(4,b,-,3),2,=0,3,a,+4,=0,且,(4,b,-,3),2,=0,a,=,,,b,=.,-,ab=,-,(,),=,1,1,的平方根是,1.,6.若求-ab 的平方根.解:3a+40且(4b-3,7,.,计算:,解:原式,=,3.6,;,解:原式,=-4,.,7.计算:解:原式=3.6;解:原式=-4.,
展开阅读全文