债券价格的利率敏感性

上传人:e****s 文档编号:252243010 上传时间:2024-11-14 格式:PPT 页数:38 大小:419KB
返回 下载 相关 举报
债券价格的利率敏感性_第1页
第1页 / 共38页
债券价格的利率敏感性_第2页
第2页 / 共38页
债券价格的利率敏感性_第3页
第3页 / 共38页
点击查看更多>>
资源描述
单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,固定收益证券,李磊宁,中央财经大学金融工程系,第四讲,:,债券价格的利率敏感性,主讲教师:李磊宁,单位:中央财经大学金融工程系,主讲课程:?金融工程学?/?固定收益证券?,联系方式:,电子邮件:,内容提要,久期,1,凸性,2,久期的定义与计算,久期与票息率、到期收益率、剩余期限的关系,债券组合的久期,凸性的定义与计算,凸性的性质,久期与凸度的简单应用,3,基点价值,表示当收益率变动一个基点时,百万面值(或百元面值)的债券价格的绝对变动额.,基点价值计算的例子-,基点价值,久期,久期的定义与计算(第一种含义),久期(duration)是债券现金流发生的加权平均时间,权重是各次现金流的现值与债券市值的比重 麦考利久期,公式:,久期,久期的计算(第一种含义),票息率为,5%、期满日为3年的国债正在平价交易,其久期为,久期,久期,久期的定义(第二种含义),久期是债券价格(针对利率的)变化率乘以1加上利率,修正久期是债券价格(针对利率的)的变化率,久期,债券价格的变动率,债券价格的变动率是修正久期与利率变动量的乘积,例如,某债券的修正久期是4,说明当利率下降上涨1%时,债券价格将上涨下降4%。,久期,久期与票息率的关系,如果其他变量保持不变,当票息率c/BT增大时,那么债券久期变小;反之,当票息率变小时,久期增大。,将该式考虑在内,久期,两边取对数并对,i,求导,久期,“21国债10的息票率从1%变动到20%时,该债券的久期和修正久期如何变化,久期,久期与收益率的关系,久期对利率的一阶导数小于零,意味着久期与利率的反向关系:当其他条件不变时,利率上升,久期缩短;利率下降,久期变长,久期,债券现金流发生时间的方差,现金流的权重,收益率从1%变动到20%时,21国债10的久期和修正久期如何变化。,久期,久期,久期与剩余到期时间的关系,对于零息债券而言,久期就是其剩余期限,所以,零息债券的剩余期限严格与久期成正比;,对于附息债券,随着到期日的延长,久期也增大,但有一个极限1+1/i,久期,债券组合的久期,债券组合的久期是构成组合的各个债券久期的加权平均,权重是各个券种的市值占债券组合总市值的比重,注意:,采用这种简单的方式计算组合的久期必须有严格的假定前提,那就是利率期限结构是扁平的并且其形状与位置都保持不变,凸性,凸性的定义与计算,定义:凸性convexity即债券价格曲线的曲率,反映了该曲线的弯曲程度。价格曲线弯曲的程度越大,凸性就越大。,债券价格,市场利率,0,图,4-1,:债券价格曲线图,例子-某债券票息率 7.25%,当前价格100.40695,当前 YTM is是7.216%.试比较发生以下两种情况时,债券实际价格与由久期预计的价格变动的差异:,(1)收益率增加 1 basis point,(2)收益率增加 200 basis points,凸性,(1)收益率增加一个基点后的新价格是 100.28478.PVBP 是(100.40695-100.28478)*10000=1223,MD=12.12,凸性,凸性,(2)收益率增加 200 基点后,所以由修正久期预测的新价格是,100.40695*(1-24.24%)=76.06831,凸性,凸性,我们用新的收益率(9.216%)算出的实际价格是 80.16387.所以,实际价格变化是 100.40695-80.16387=20.24308,而由久期预测的变化是 100.40695*0.2424=24.33865,差异由债券价格曲线的凸性造成,这个差异是 24.33865-20.24308=4.09557,凸性,凸性,7.216%,9.216%,80.16387,76.0683,差异,收益率,价格,100.40695,凸性,凸性,凸性的算式,组合的凸性,凸性,凸性,考虑凸性以后债券价格波动的估计,线性一次逼近,二次逼近,i*,i*+,i,B*,B*+,B,3,2,1,有效的债券价格,市场收益率,价格,收益率,债券价格,债券,A,债券,B,凸性,债券,A,相对于债券,B,的凸性大,所以,A,的价格往往高于,B,凸性,凸性的性质,凸性的大小与利率、久期和债券现金流发生时间的方差三个因素有关;,凸性与利率呈反向关系,与久期与债券现金流发生时间的方差呈正向关系;,长期债券的凸性大于短期债券的凸性,因为前者的久期比较长;,如果两个债券组合有相同的久期,那么常常是由假设干不同的债券组成的债券组合的凸性大于由单一债券构成的债券组合的凸性,因为前者债券现金流发生时间的方差往往大于后者,久期与凸性的简单应用,解决资产与负债的期限匹配,某一金融机构未来有一系列债务L,t,,同时也有一系列的资产收入A,t,,这些债务或者资产可以看作是一系列的零息债券。如果所有期限的利率水平为i,资产与债务的当前价值A,0,和L,0,是相同的,把它们放在一起就是一个投资组合N,令N=A,0,-L,0,,,资产的久期,债务的久期,无论利率如何变化,投资组合,N,将来的价值变化为零,只有DA=DL,即资产的久期与负债的久期相等,才能根本保证投资组合在利率变化时价值变化为零。如果再加上凸性相等,就能够完全匹配资产与债务。,久期与凸性的简单应用,构建对冲债券投资组合,市值相同,组合久期和凸性相同,做空对冲债券投资组合即可完全躲避利率风险,构建凸性增强债券投资组合,市值相同,久期相同,用多种债券构造凸性更高的债券投资组合,组合市值10万元。各债券的市值权重相同,即各占债券组合总市值的1/3。2021年10月29日这一天组合的久期和凸度分别为5.31和42.28。,债券投资组合 2021年10月29日,久期与凸性的简单应用,构建对冲债券投资组合,用于对冲的债券组合,用于对冲的债券组合的属性,215.41份“03国债(7)、677.32份“06国债(3)以及134.32份“03国债(3)。,构建对冲债券投资组合,久期与凸性的简单应用,久期与凸性的简单应用,构建凸性增强债券投资组合,增强凸性的重要措施就是尽量用债券组合代替单一债券,因为债券组合的现金流发生时间的方差往往大于单个债券,在久期相同的情况下,现金流发生时间的方差大小对凸性有决定性的作用,方差越大,凸性越强。,久期与凸性的简单应用,构建凸性增强债券投资组合,x、y、z是三个不同的债券,我们希望x、y构成一个组合来代替z。设Nx、Ny、Nz分别代表这三种债券的数量,Bx、By、Bz分别代表这三种债券的价格,Dx、Dy、Dz分别代表这三种债券的久期,组合构造的原那么就是“市值相同、久期相同,久期与凸性的简单应用,构建凸性增强债券投资组合,现有债券的根本情况:,假设投资者只拥有“2006年记账式(三期)国债债券这一种债券,其价值为100000元。,该债券简称“06国债3,该债券的发行日期为2006年3月27日,期限10年,半年付息一次,利息支付日为每年3月27日和9月28日,票面利率为2.8%,到期日为2021年3月27日。,在2021年10月29日这天,其久期和凸度分别为5.8878和38.2386,凸性的简单应用,投资者用于凸性增强的债券组合,设定凸性增强目标,市值、久期不变,凸性增强至40,据此计算对冲债券组合中各债券的权重,进而计算其数量,40.37份“03国债8,833.33份“05国债1,165.61份“02国债13,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!