集合之间的关系与运算--课件

上传人:无*** 文档编号:252202259 上传时间:2024-11-13 格式:PPTX 页数:44 大小:337.98KB
返回 下载 相关 举报
集合之间的关系与运算--课件_第1页
第1页 / 共44页
集合之间的关系与运算--课件_第2页
第2页 / 共44页
集合之间的关系与运算--课件_第3页
第3页 / 共44页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,ppt课件,1.2,集合之间的关系与运算,1.2.1,集合之间的关系,1.2.2,集合的运算,1,ppt课件,学习目标,理解子集和集合相等的概念,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力。,掌握并能使用Venn图表达集合的关系。,了解集合关系与其特征性质之间的关系。,2,ppt课件,复习回顾,问题1:元素与集合之间的关系是什么?,问题2:集合有哪些表示方法?集合的分类有哪些?,3,ppt课件,观察下列几组集合,集合,A,与集合,B,之间有什么关系?,A,=1,2,3,,B,=1,2,3,4,5,A,=x|x3,,B,=x|3x60,A,=正方形,,B,=四边形,A,=高一年级的女生,,B,=,高一年级的学生,4,ppt课件,子集,定义:一般地,如果集合,A,中的任意一个元素都是集合,B,的元素,那么集合,A,叫做集合,B,的,子集,,记作,A,B,或,B,A,,读作,“,A,包含于,B,”,,或,“,B,包含,A,”,。,如果集合,P,中存在着不是集合,Q,的元素,那么集合,P,不包含于,Q,,或,Q,不包含,P,,分别记作,P,Q,或,Q,P,。,5,ppt课件,思考:符号,“,”,与符号,“,”,表达的含义相同吗?,6,ppt课件,子集,A,=,,,B,=0,集合,A,与集合,B,之间有什么关系?,规定:,空集是任何一个集合的子集。,A,=平行四边形,,B,=平行四边形,集合,A,与集合,B,之间有什么关系?,任何一个集合都是它本身的子集。,7,ppt课件,子集,A,B,A B,8,ppt课件,真子集,定义:如果集合,A,是集合,B,的子集,并且,B,中至少有一个元素不属于,A,,那么集合,A,叫做集合,B,的,真子集,,记作,A,B,或,B,A,,读作,“,A,真包含于,B,”,或,“,B,真包含,A,”,。,例如,,A,=1,2,3,,B,=1,2,3,4,5,则,A,B,或,B,A,。,A,B,9,ppt课件,真子集,根据子集、真子集的定义可以推知:对于集合,A,,,B,,,C,,如果,A,B,,,B,C,,则,A,C,;,对于集合,A,,,B,,,C,,如果,A,B,,,B,C,,则,A,C,。,10,ppt课件,思考:空集是任意一个集合的子集,那么空集是什么集合的真子集呢?,11,ppt课件,子集的个数,例,1,:写出集合,A=1,2,3,的所有子集和真子集。,12,ppt课件,子集的个数,集合,集合中元素的个数,子集的数目,a,1,a,b,2,a,b,c,3,a,b,c,d,4,a,b,c,d,e,5,.,.,2,4,8,16,32,13,ppt课件,探索与研究,你能找出,“,元素个数,”,与,“,子集数目,”,之间关系的规律吗?,如果一个集合中有,n,个元素,你能写出计算它的所有子集数目的公式吗(用,n,表述)?,14,ppt课件,集合的相等,考察集合,A,=,x,|(,x,+1)(,x,+2)=0,,,B,=-1,-2,。,可以看出,集合,A,和集合,B,的元素完全相同,只是表达形式不同。,15,ppt课件,集合的相等,定义:一般地,如果集合,A,的每一个元素都是集合,B,的元素,反过来,集合,B,的每一个元素也都是集合,A,的元素,那么我们就说,集合,A,等于集合,B,,记作,A,B,。,由相等的定义,可得:如果,A,B,,又,B,A,,则,A,B,;,反之,如果,A,B,,则,A,B,,且,B,A,。,A B,16,ppt课件,例,2,:说出下列每对集合的关系。,A,1,2,3,4,5,,,B,1,3,5,P,x,|,x,2,1,,,Q,x|x,|,1,C,x|,x,是奇数,,,D,x|x,是整数,17,ppt课件,练习:教材练习,A 1,3,4,题,练习,B 1,3,4,题,18,ppt课件,集合关系与其特征性质之间的关系,命题:如果两个三角形对应边相等、对应角相等,那么这两个三角形全等。,这个命题还可以表述为,两个三角形对应边相等、对应角相等推出这两个三角形全等。,“,推出,”,一词用符号,“”,表示,读作,“,推出,”,,于是上述命题可以表述为,两个三角形对应边相等、对应角相等,这两个三角形全等。,19,ppt课件,集合关系与其特征性质之间的关系,命题,1,:两直线平行,同位角相等。命题,2,:同位角相等,两直线平行。,这两个命题的条件和结论可以互相推出,,“,互相推出,”,用符号,“”,表示,于是上述两个正确的互逆命题可表示为,两直线平行,同位角相等。,20,ppt课件,集合关系与其特征性质之间的关系,我们可以通过判断两个集合之间的关系来判断它们特征性质之间的关系,或用集合特征性质之间的关系,判断集合之间的关系。,一般地,设,A,=,x|p,(,x,),,,B=,x|q,(,x,),,如果,A,B,,则,x,A,x,B,于是,x,具有性质,p,(,x,),x,具有性质,q,(,x,),。反之,如果,p,(,x,),q,(,x,),,则,A,一定是,B,的子集。,显然,如果,p,(,x,),q,(,x,),,则,A,B,;,反之,如果,A,B,,则,p,(,x,),q,(,x,),。,21,ppt课件,练习:教材练习,A 2,题,练习,B 2,题,22,ppt课件,1.2,集合之间的关系与运算,1.2.1,集合之间的关系,1.2.2,集合的运算,23,ppt课件,学习目标,理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集。,理解在给定集合中一个子集的补集的含义,会求给定子集的补集。,能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。,24,ppt课件,集合是怎样进行运算?,集合运算的含义:由两个已知的集合,按照某种指定的法则,构造出一个新的集合。,25,ppt课件,交集,定义:一般地,对于两个给定的集合,A,,,B,,由属于,A,又属于,B,的所有元素构成的集合,叫做,A,,,B,的,交集,,记作,AB,,读作,“A,交,B”,。,例如,,A=1,2,3,4,5,,,B=3,4,5,6,8,,则,AB=3,4,5,。,A,B,AB,26,ppt课件,交集,如何用数学语言表示交集?,AB=x|xA,且,xB,。,27,ppt课件,直线,l,与,O,相交于两点,A,,,B,,用集合语言可表示为,l,O=A,B,如何用集合语言表示平面内的两条直线平行或重合?,交集,A,B,l,O,28,ppt课件,交集,两个非空集合的交集可能是空集吗?,A,B,29,ppt课件,交集的性质,对于任意两个集合,A,,,B,,都有,A,B,B,A,;,A,A,A,;,A,A,;,如果,A,B,,则,A,B,A,.,30,ppt课件,并集,定义:一般地,对于两个给定的集合,A,,,B,,,两个集合,的所有元素构成的集合,叫做,A,,,B,的,并集,,记作,AB,,读作,“A,并,B”,。,例如,,A=1,3,5,,,B=2,3,4,6,,,C=7,8,,则,AB=1,2,3,4,5,6,,,AC=1,3,5,7,8,。,A,B,A,B,A,C,A,C,31,ppt课件,并集的性质,对于任意两个集合,A,,,B,,都有,A,B,B,A,;,A,A,A,;,A,A,A,;,如果,A,B,,则,A,B,B,.,32,ppt课件,并集,如何用数学语言表示并集?,AB=x|xA,或,xB,。,33,ppt课件,练习:教材,P16,例,1,例,4,教材,P17,例,5,34,ppt课件,集合中元素个数的运算,有限集合,M,所含元素的个数记作,card(M),,并规定,card(,),0,。,设,A,,,B,为两个有限集,讨论,card(A),,,card(B),,,card(AB),,,card(AB),四个数值的关系。,35,ppt课件,集合中元素个数的运算,例:已知,A=,高一年级参加数学小组的学生,,,B=,高一年级参加足球队的学生,,,card(A)=20,,,card(B)=8,,,card(AB)=4,,你能求出,card(AB),吗?,card(AB),card(A),card(B),card(AB),36,ppt课件,练习:教材,P24,自测与评估 第,6*,题,37,ppt课件,补集,全集:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为,全集,。在维恩图中,全集通常用矩形区域表示。,例如,我们在研究数集时,,常常把实数集,R,作为全集,。如果我们讨论的数仅限为自然数,我们可取自然数集,N,为全集。,U,38,ppt课件,补集,补集:如果给定集合,A,是全集,U,的一个子集,由,U,中不属于,A,的所有元素构成的集合,叫做,A,在,U,中的补集,记作,U,A,,读作,“,A,在,U,中的补集,”,。,全集与它的任意一个真子集之间的关系,可用韦恩图表示为:,U,A,U,A,39,ppt课件,补集的性质,对于任意集合,A,,有,A,U,A,U,;,A,U,A,;,U,(,U,A,),A,.,40,ppt课件,练习:教材,P19,例,6,例,8,,练习,A,,练习,B,41,ppt课件,德摩根定律,探索与研究,已知全集,U,=1,2,3,4,5,6,7,8,,,A,=3,4,5,,,B,=4,7,8,。(,1,)求,U,A,,,U,B,,,U,A,U,B,,,U,A,U,B,;(,2,)验证:,U,(,AB,),=,U,A,U,B,,,U,(,A,B,)=,U,A,U,B,。,练习:教材,P23,巩固与提高 第,8*,题,42,ppt课件,本章小结,集合,集合的概念,集合的表示方法,列举法,描述法,集合之间的关系,子集,真子集,集合的相等,集合的运算,交集,并集,补集,43,ppt课件,练习:教材,P8P9,,,P20P21,44,ppt课件,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!