资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,二次函数,y=ax,2,+bx+c,的图象和性质,x,y,怎样直接作出函数,y=3x,2,-6x+5,的图象,?,函数,y=ax,+bx+c,的图象,我们知道,作出二次函数,y=3x,2,的图象,通过平移抛物线,y=3x,2,可以得到二次函数,y=3x,2,-6x+5,的图象,.,1.,配方,:,提取二次项系数,配方,:,加上再减去一次项系数绝对值一半的平方,整理,:,前三项化为平方形式,后两项合并同类项,化简,:,去掉中括号,老师提示,:,配方后的表达式通常称为,配方式,或,顶点式,直接画函数,y=ax,+bx+c,的图象,4.,画对称轴,描点,连线,:,作出二次函数,y=3(x-1),2,+2,的图象,2.,根据配方式,(,顶点式,),确定开口方向,对称轴,顶点坐标,.,x,-2,-1,0,1,2,3,4,3.,列表,:,根据对称性,选取适当值列表计算,.,29,14,5,2,5,14,29,a=30,开口向上,;,对称轴,:,直线,x=1;,顶点坐标,:(1,2).,学了就用,别客气,?,作出函数,y=2x,2,-12x+13,的图象,.,X=1,(1,2),X=3,(3,-5),例,.,求次函数,y=ax,+bx+c,的对称轴和顶点坐标,函数,y=ax,+bx+c,的顶点式,一般地,对于二次函数,y=ax,+bx+c,我们可以利用配方法推导出它的对称轴和顶点坐标,.,1.,配方,:,提取二次项系数,配方,:,加上再减去一次项系数绝对值一半的平方,整理,:,前三项化为平方形式,后两项合并同类项,化简,:,去掉中括号,老师提示,:,这个结果通常称为求,顶点坐标公式,.,顶点坐标公式,?,因此,二次函数,y=ax,+bx+c,的图象是一条抛物线,.,根据公式确定下列二次函数图象的对称轴和顶点坐标:,如图,两条钢缆具有相同的抛物线形状,.,按照图中的直角坐标系,左面的一条抛物线可以用,y=0.0225x,+0.9x+10,表示,而且左右两条抛物线关于,y,轴对称,钢缆的最低点到桥面的距离是多少?,两条钢缆最低点之间的距离是多少?,你是怎样计算的?与同伴交流,.,函数,y=ax,2,+bx+c,(a0),的应用,Y/m,x/m,桥面,-5 0 5,10,.,钢缆的最低点到桥面的距离是少?你是怎样计算的?与同伴交流,.,可以将函数,y=0.0225x,2,+0.9x+10,配方,求得顶点坐标,从而获得,钢缆的最低点到桥面的距离,;,Y/m,x/m,桥面,-5 0 5,10,由此可知钢缆的最低点到桥面的距离是,1m,。,两条钢缆最低点之间的距离是多少?你是怎样计算的?与同伴交流,.,想一想,你知道图中右面钢缆的表达式是什么吗,?,Y/m,x/m,桥面,-5 0 5,10,你还有其它方法吗?与同伴交流,.,直接利用顶点坐标公式再计算一下上面问题中钢缆的最低点到桥面的距离以及两条钢缆最低点之间的距离,Y/m,x/m,桥面,-5 0 5,10,由此可知钢缆的最低点,到桥面的距离是,1m,。,请你总结函数,函数,y=ax,2,+bx+c,(a0),的图象和性质,想一想,函数,y=ax,2,+bx+c,和,y=ax,2,的图象之间的关系是什么?,二次,函数,y=ax,2,+bx+c,(a0),的图象和性质,.,顶点坐标与对称轴,.,位置与开口方向,.,增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax,2,+bx+c,(a0),y=ax,2,+bx+c,(a0,时,开口向上,在对称轴左侧,y,都随,x,的增大而减小,在对称轴右侧,y,都随,x,的增大而增大,.a,0,时,向右平移,;,当,0,时向上平移,;,当,0,时,向下平移,),得到的,.,驶向胜利的彼岸,小结 拓展,回味无穷,二次,函数,y=ax,2,+bx+c,(a0),与,=ax,的关系,独立,作业,1.,确定下列,二次函数的开口方向、对称轴和顶点坐标,.,结束寄语,探索是数学的生命线,.,再见,
展开阅读全文