资源描述
,单击此处编辑母版标题样式,编辑母版文本样式,第二级,第三级,第四级,第五级,2021/5/30 Sunday,#,探索勾股定理,第一章 勾股定理,第2课时,导入新课,讲授新课,当堂练习,课堂小结,探索勾股定理第一章 勾股定理第2课时导入新课讲授新课当堂练,1,1.,学会用几种方法验证勾股定理(重点),2.,能够运用勾股定理解决简单问题(重点,难点),学习目标,1.学会用几种方法验证勾股定理(重点)学习目标,2,导入新课,观察与思考,活动:,请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形,有不同的拼法吗?,导入新课观察与思考 活动:请你利用自己准,3,讲授新课,勾股定理的验证,一,据不完全统计,验证的方法有,400,多种,你有自己的方法吗?,问题:,上节课我们认识了勾股定理,你还记得它的内容吗?那么如何验证勾股定理呢 ?,讲授新课勾股定理的验证一 据不完全统计,验证的方法,4,a,a,a,a,b,b,b,b,c,c,c,c,方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理,验证方法一:,毕达哥拉斯证法,大正方形的面积可以表示为,;,也可以表示为 .,(,a,+,b,),2,c,2,+4,ab, (,a,+,b,),2,=,c,2,+ 4,ab,a,2,+2,ab,+,b,2,=,c,2,+2,ab,a,2,+,b,2,=,c,2,aaaabbbbcccc方法小结:我们利用拼图的方法,将形的,5,c,a,b,c,a,b,验证方法二:赵爽弦图,b,c,a,b,c,大正方形的面积可以表示为,;,也可以表示为,.,c,2,= 4,ab,+(,b,-,a,),2,=2,ab,+,b,2,-2,ab,+,a,2,=,a,2,+,b,2,a,2,+,b,2,=,c,2,c,2,4,ab,+(,b,-,a,),2,cabcab 验证方法二:赵爽弦图bcabc大正方形的面积可,6,b,c,a,b,c,a,A,B,C,D,如图,梯形由三个直角三角形组合而成,利用面积公式,列出代数关系式,得,化简,得,验证方法三:美国总统证法,bcabcaABCD如图,梯形由三个直角三角形组合而成,利用,7,a,b,c,青入,青方,青,出,青出,青入,朱入,朱方,朱出,青,朱出入图,课外链接,abc青入青方青青出青入朱入朱方朱出青朱出入图课外链接,8,a,b,c,A,B,C,D,E,F,O,达,芬奇对勾股定理的证明,abcABCDEFO达芬奇对勾股定理的证明,9,A,a,B,C,b,D,E,F,O,A,B,C,D,E,F,AaBCbDEFOABCDEF,10,如图,过,A,点画一直线,AL,使其垂直于,DE,, 并交,DE,于,L,,交,BC,于,M.,通过证明,BCF,BDA,,利用三角形面积与长方形面积的关系,得到正方形,ABFG,与矩形,BDLM,等积,同理正方形,ACKH,与 矩形,MLEC,也等积,于是推得,欧几里得证明勾股定理,如图,过 A 点画一直线 AL 使其垂直于 DE,11,推荐书目,推荐书目,12,议一议,观察下图,用数格子的方法判断图中三角形的三边长是否满足,a,2,+,b,2,=,c,2,.,议一议观察下图,用数格子的方法判断图中三角形的三边长是否满足,13,勾股定理的简单应用,二,例,1,:,我方侦查员小王在距离东西向公路,400m,处侦查,发现一辆敌方汽车在公路上疾驶,.,他赶紧拿出红外测距仪,测得汽车与他相距,400m,10s,后,汽车与他相距,500m,,你能帮小王计算敌方汽车的速度吗,?,公路,B,C,A,400m,500m,解,:,由勾股定理,得,AB,2,=,BC,2,+,AC,2,,,即,500,2,=,BC,2,+400,2,,,所以,,BC,=300.,敌方汽车,10,s,行驶了,300,m,那么它,1h,行驶的距离为,300660=108000,(,m,),即它行驶的速度为,108,km/h,.,勾股定理的简单应用二例1:我方侦查员小王在距离东西向公路40,14,练一练,1.,湖的两端有,A,、两点,从与,A,方向成直角的,BC,方向上的点,C,测得,CA=130,米,CB=120,米,则,AB,为(,),A,B,C,A.50,米,B.120,米,C.100,米,D.130,米,130,120,?,A,练一练1.湖的两端有A、两点,从与A方向成直角的BC方向,15,A,B,C,2.,如图,太阳能热水器的支架,AB,长为,90 cm,与,AB,垂直的,BC,长为,120 cm.,太阳能真空管,AC,有多长,?,解:,在,RtABC,中,由勾股定理,得,AC,2,=A,B,2,+,BC,2,,,AC,2,=90,2,+,120,2,,,AC,=150(cm).,答,:,太阳能真空管,AC,长,150 cm.,ABC2.如图,太阳能热水器的支架AB长为90 cm,与AB,16,例,2,:,如图,高速公路的同侧有,A,,,B,两个村庄,它们到高速公路所在直线,MN,的距离分别为,AA,1,2km,,,BB,1,4km,,,A,1,B,1,8km.,现要在高速公路上,A,1,、,B,1,之间设一个出口,P,,使,A,,,B,两个村庄到,P,的距离之和最短,求这个最短距离和,例2:如图,高速公路的同侧有A,B两个村庄,它们到高速公路所,17,解:作点,B,关于,MN,的对称,点,B,,连接,AB,,交,A,1,B,1,于,P,点,连,BP.,则,AP,BP,AP,PB,AB,,,易知,P,点即为到点,A,,,B,距离之和最短的点,过点,A,作,AEBB,于点,E,,,则,AE,A,1,B,1,8km,,,BE,AA,1,BB,1,2,4,6(km),由勾股定理,得,BA,2,AE,2,BE,2,8,2,6,2,,,AB,10(km),即,AP,BP,AB,10km,,,故出口,P,到,A,,,B,两村庄的最短距离和是,10km.,解:作点B关于MN的对称,18,变式:,如图,在一条公路上有,A,、,B,两站相距,25km,,,C,、,D,为两个小镇,已知,DA,AB,CB,AB,DA,=15km,CB,= 10km,,现在要在公路边上建设一个加油站,E,,使得它到两镇的距离相等,请问,E,站应建在距,A,站多远处,?,D,A,E,B,C,15,10,25,-x,变式:如图,在一条公路上有A、B两站相距25km,C、D为两,19,当堂练习,1,.,在直角三角形中,满足条件的三边长可以是,(,写出一组即可,),【,解析,】,答案不唯一,只要满足式子,a,2,+,b,2,=,c,2,即可,.,答案:,3,,,4,,,5,(满足题意的均可),2,.,如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,阳光透过的最大面积是,_.,200m,2,当堂练习1.在直角三角形中,满足条件的三边长可以是,20,3.,如图,一根旗杆在离地面,9 m,处折断,旗杆顶部落在离旗杆底部,12 m,处,.,旗杆原来有多高,?,12 m,9 m,解:设旗杆顶部到折断处的距离为,x,m,,,根据勾股定理得,解得,x,=15, 15+9=24(m).,答:旗杆原来高,24 m,.,3.如图,一根旗杆在离地面9 m处折断,旗杆顶部落在离旗杆底,21,4.,如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,,A,D=1,3,m,B=,ACD=,90小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?,解:在,RtABC,中,由勾股定理,得,AC,2,=,AB,2,+,B,C,2,,,AC=5m,,在,RtACD,中,由勾股定理,得,CD,2,=,AD,2,AC,2,,,C,D,=,12,m,,S,草坪,=S,RtABC,+S,RtACD,= ABBC+ ACDC,=,(,34+512,),=36 m,2,故需要的费用为36100=3600元,4.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形,22,5.,如图,折叠长方形,ABCD,的一边,AD,,使点,D,落在,BC,边的,F,点处,若,AB=8cm,,,BC=10cm,,求,EC,的长,.,D,A,B,C,E,F,解:,在,RtABF,中,由勾股定理,得,BF,2,=,AF,2,AB,2,=10,2,8,2,BF,=,6(cm).,CF=,BC,BF=,4.,设,EC,=,x,,则,EF=DE=8,x,,,在,RtECF,中,根据勾股定理,得,x,2,+,4,2,=,(,8,x,),2,解得,x,=3.,所以,EC,的长为,3 cm.,5.如图,折叠长方形ABCD的一边AD,使点D落在BC边的F,23,探索勾股定理,勾股定理的验证,课堂小结,勾股定理的简单运用,探索勾股定理勾股定理的验证 课堂小结勾股定理的简单运用,24,
展开阅读全文