资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,3/10/2020,#,Two-dimensional semiconductor,Two-dimensional semiconductor,1,Outlook,Electronics,of,2D,materials,1.,Scaling,of,the,semiconductor generation,2.,Electronic,engineering,of,TMDC,Strong confinement of monolayer TMDCs,Indirect to direct band gap transition,Excitonic transitions,Inversion symmetry breaking of monolayer TMDCs,1.,N,onlinearity (Piezo, SHG),2. Nonequivalent valley index,OutlookElectronics of 2D mater,2,Insulator, semiconductor and conductor,Insulator, semiconductor and c,3,S,emiconductor and,human,daily,life,Semiconductor and human daily,4,Point,-contact,transistor-first,transistor,ever,made,The first point-contact transistor.,Point-contact transistor-first,5,Technology generation,-need,broad,exploration,45,nm,2007,22,nm,2011,32,nm,2009,14,nm,2013,10,nm,2015,7,nm,2017,Beyond,2020,QW,III-V,device,Carbon,Nanotube,1,nm,diameter,Graphene,1,atom,thick,Technology generation-need bro,6,Nature Nanotechnology 6, 147 (2011),Why,2D,semiconductor,Nature Nanotechnology 6, 147 (,7,From Wiki,Molybdenite,From WikiMolybdenite,8,Nature Nanotech. 7, 699 (2012),Different stacking phases of the MoS,2,Nature Nanotech. 7, 699 (2012),9,Cleaved by blade and tweezers,Cleaved by blade and tweezers,10,Single,-layer,MoS,2,transistors,Nature Nanotechnology 6, 147 (2011),.,Single-layer MoS2 transistorsN,11,MoS,2,transistors,with,1,nm,gate,lengths,Science,354, 99 (2016).,MoS2 transistors with 1 nm gat,12,Wafer,scale,monolayer,MoS,2,Nature,520,656,(201,5,),Wafer scale monolayer MoS2Natu,13,Carbon,nanotube,computer,Inorganic,n,anowire,Carbon,nanotubes,Precisely,place,and,orientation,Complex,fabrication,techniques,Nature,501,526,(201,3,),Carbon nanotube computerInorga,14,S,elf-assembly,graphene-MoS,2,-graphene heterostructures,Nature,Nanotechnolgoy,DOI,:,10.1038/NNANO.2016.115.,Self-assembly graphene-MoS2-gr,15,TEM,characteristics,Nature,Nanotechnolgoy,DOI,:,10.1038/NNANO.2016.115.,TEM characteristicsNature Nano,16,Transistor,of,graphene/MoS,2,/graphene,Nature,Nanotechnolgoy,DOI,:,10.1038/NNANO.2016.115.,Transistor of graphene/MoS2/gr,17,Self,-assembled,2D,circuit,Nature,Nanotechnolgoy,DOI,:,10.1038/NNANO.2016.115.,Self-assembled 2D circuitNatur,18,Outlook,Electronics,of,2D,materials,1.,Electronic,engineering,of,TMDC,2.Transistors,built,on,black,phosphorous,Strong confinement of monolayer TMDCs,Indirect to direct band gap transition,Excitonic transitions,Inversion symmetry breaking of monolayer TMDCs,1.,N,onlinearity (Piezo, SHG),2. Nonequivalent valley index,OutlookElectronics of 2D mater,19,Bulk,Q,uadrilayer Bilayer monolayer,Atomic,structure and,electronic band structure,of,MoS,2,Nano Lett.,2010,10, 12711275,Bulk Quadrila,20,PL and quantum yield of MoS,2,PRL 105, 136805 (2010),21,Excitation 488 nm,Detection 640nm,PL and quantum yield of MoS2PR,Si/MoS,2,pn,heterojunction,22,APL 104, 193508 (2014),Si/MoS2 pn heterojunction22APL,Homojunction LEDs,Nature Nanotech. 9, 268 (2014) Nature Nanotech. 9, 262 (2014) Nature Nanotech. 9, 257 (2014),Homojunction LEDsNature Nanote,23,Homojunction LEDs,Nature Nanotech. 9, 268 (2014),Nature Nanotech. 9, 262 (2014),Nature Nanotech. 9, 257 (2014),Homojunction LEDsNature Nanote,24,2D exciton,PRL 113, 076802 (2014),Charles Kittel,Introduction to solid state physics,2D excitonPRL 113, 076802 (201,25,Monolayer WS,2,Rydberg series,PRL 113, 076802 (2014),Binding energy: 320 meV,Monolayer WS2 Rydberg seriesPR,26,Probing dark state in monolayer WS,2,Binding energy: 700 meV,Nature 513, 214 (2014).,Probing dark state in monolaye,27,First-principle calculation,Nature 513, 214 (2014).,Binding energy: 700 meV,First-principle calculationNat,28,Control of neutral and charged excitons emission,Nature Comm.,4, 1474 (2013).,Control of neutral and charged,29,Control of neutral and charged excitons emission,Nature Comm.,4, 1474 (2013).,Control of neutral and charged,30,Higher,modulation,bandwidth,Small,emission,linewidth,High Q cavity,Strong confinement factor,Monolayer WS,2,excitonic,laser,Nature,Photonics,9,733,(2015).,Higher modulation bandwidthHig,31,WGM modes,190 fs, 80 MHz, excitation Q2600,Nature,Photonics,9,733,(2015).,WGM modes190 fs, 80 MHz, excit,32,Observation of monolayer lasing,Nature,Photonics,9,733,(2015).,Observation of monolayer lasin,33,Long wavelength WGM,Nature,Photonics,9,733,(2015).,Long wavelength WGMNature Phot,34,Characterizations of 2D excitonic lasing,Nature,Photonics,9,733,(2015).,Characterizations of 2D excito,35,Strong confinement of monolayer TMDC,Electronic structure evolution: indirect band gap to direct band gap.,Direct band gap of the monolayer TMDC enables light emission.,Large exciton binding energy: robust excitonic phenomena even at room temperature.,Large trion binding energy.,Strong confinement of monolaye,36,Outlook,Electronics,of,2D,materials,1.,Electronic,engineering,of,TMDC,2.Transistors,built,on,black,phosphorous,Strong confinement of monolayer TMDCs,Indirect to direct band gap transition,Excitonic transitions,Inversion symmetry breaking of monolayer TMDCs,1.,N,onlinearity (Piezo, SHG),2. Nonequivalent valley index,OutlookElectronics of 2D mater,37,Symmetry for phase and layer dependent,Bulk 3R,Bulk or even-layers 2H,Monolayer,With inversion symmetry,Indirect bandgap,Without inversion symmetry,Indirect bandgap,Without inversion symmetry,D,irect bandgap,Symmetry for phase and layer d,38,arXiv: 1304.4289v1 (2013),Angular dependent SHG of monolayer MoS,2,WiKi,arXiv: 1304.4289v1 (2013)Angul,39,SHG determines the grain size,Science 344, 488 (2014),SHG determines the grain size,40,Science 344, 488 (2014),SHG,mapping,SHG vs TEM,DF,-STEM,Science 344, 488 (2014)SHG map,41,Layer number dependence of SHG,Nano Lett. 13, 3329 (2013).,Layer number dependence of SHG,42,SHG,from,3R,stacking,phase,Light,:,Sci.,&,Appl.,5,e16131,(2016),.,SHG from 3R stacking phaseLigh,43,Light,:,Sci.,&,Appl.,5,e16131,(2016),.,Layer number dependence of SHG,Light: Sci. & Appl. 5, e16131,44,Light,:,Sci.,&,Appl.,5,e16131,(2016),.,Layer number dependence of SHG,Light: Sci. & Appl. 5, e16131,45,Piezoelectricity of MoS,2,Nature 514, 470 (2014).,J. Phys. Chem. Lett.,3, 2871 (2012).,Piezoelectricity of MoS2Nature,46,Nature 514, 470 (2014).,Piezoelectricity MoS,2,Nature 514, 470 (2014).Piezoel,47,Piezoelectricity of MoS,2,Nature Nanotech.,10,151,(2015).,Piezoelectricity of MoS2Nature,48,Valley index,Valleytronics:,Use,v,alley index for,encoding,information,Generation and detection,How to generate and control valley carrier?,Nonequivalent valley carriers: how to measurable it associated with valley index?,Valley indexValleytronics:,49,Valley contrasting properties by ISB,Valley contrasting properties,Opposite,&,m,for a time reversal pair of valleys,Necessary condition: inversion symmetry breaking (ISB),Valley contrasting properties,50,Valley optical selection rule,Nature Comm. 3, 887 (2012).,PRB 77, 235406 (2008).,Valley optical selection ruleN,51,Nature,Nanotech. 7, 490 (2012);,Nature,Nanotech. 7, 494 (2012);,Nature,Comm. 3, 887 (2012).,Circularly polarized light boosts valleytronics,Nature Nanotech. 7, 490 (2012),52,Chiral light-emitting transistor,Science 344, 725 (2014).,Chiral light-emitting transist,53,Triangular warping,arXiv: 1410.0615v1,Triangular warpingarXiv: 1410.,54,Electrical control of circularly polarized emission,Science 344, 725 (2014).,Light,:,Sci.,&,Appl.,6,e124,(2014),.,Electrical control of circular,55,Electrical valley generation and detection in monolayer TMDCs,TMDC: long lifetime of polarized hole and spin-valley locking,.,Ferromagnetic semiconductor: conductivity matching and high spin injection efficiency.,Nat. Nanotech.,11, 598, (2016).,Electrical valley generation a,56,WS,2,/(Ga, Mn)As heterostructure,No defect emission.,Suppression of B exciton emission.,Nat. Nanotech.,11, 598, (2016).,WS2/(Ga, Mn)As heterostructure,57,Electrical Valley excitation in WS,2,Outward B,Inward B,= -14.8%,= 16.2%,Nat. Nanotech.,11, 598, (2016).,Electrical Valley excitation i,58,Magnetic field dependent,Nat. Nanotech.,11, 598, (2016).,Magnetic field dependentNat. N,59,Valley exciton generation efficiency,Non-perfect spin polarization.,Valley scattering.,Joule heating.,Nat. Nanotech.,11, 598, (2016).,Valley exciton generation effi,60,Valley contrasting Berry curvature,PRL 99, 236809 (2007).,Valley contrasting Berry curva,61,The valley Hall effect,Science 344, 1489 (2014).,The valley Hall effectScience,62,ISB of monolayer TMDC,ISB enables SHG in monolayer TMDC and provides an all-optical technique for material characteristics.,ISB enables piezoelectricity of monolayer TMDC and provides mechanical-to-electrical energy conversion.,ISB protects the non-equi,va,lent valleys (K and K), may open an avenue to the valleytronics.,ISB of monolayer TMDCISB enabl,63,A new platform for vdWs heterostructures,Nature 499, 419 (2013).,Transfer method:,Assemble the vdWs heterostructures with clean interface.,Edge contact:,Electrical access and tune each active 2D materials.,A new platform for vdWs hetero,64,vdWs,heterostructures,Graphene,hBN,MoS,2,NbSe,2,TaS,2,Cr,2,Ge,2,Te,6,Bi,2,Se,3,Graphene,(semimetal),Twisted stacking,Hofstadter butterfly,tunneling,Induced,SOC,(optical spin injection),Andreev reflection,Supperlattice,potential,Magnetic insulating,Contacting surface states,hBN,(insulator),Twisted stacking,Encapsulation,Encapsulation tunneling,Excapsulating tunneling,Control exchange,interaction,Encapsulating,tunneling,MoS,2,(semicond),Coulomb drag,Supercond/semicon,d junction,Superlattice,modulation,Magnetic semiconductor,Valleytronics,NbSe,2,(supercond.),Josephson,coupling,Competing,order parameters,Triplet superconductor,Majorans,TaS,2,(CDW),C-axis CDW,orders,Competing order parameters,Supperlattice,modulation,Cr,2,Ge,2,Te,6,(magnetic),C-axis magnetic orders,Creating,gap in TI surface,Bi,2,Se,3,(T. I.),Annihilation TI surface states,disadvantages,No gap,Too large gap,Low mobility,unstable,Surface,oxidation,unstable,Surface contamination,vdWs heterostructuresGraphene,65,Thank,you,for,your,attention.,Yu Ye,(,叶堉),ye,_yu, you for your attention.Y,66,
展开阅读全文