资源描述
单击以编辑,母版标题样式,单击以编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,7.3,电导,电导率和摩尔电导率,1.,几个定义:,(1 S = 1 ,-1,),,定义,(2),电导率,(,),,单位为,Sm,-1,电导率,的物理意义:,单位面积,单位长度的电解质溶液的电导。,(1),电导,(,G,),单位为,S,(3),摩尔电导率,(,m,):,m,=,/,c,单位为,S. m,2,mol,-1,.,物理意义,:,1,摩尔电解质溶液在相距,1,米的平行电极间的电导,.,间距,1m,1mol,m,2.,电导的测定,惠斯通(,Wheatstone,),电桥:,K,cell,=,l /A,s,为,电导池常数,移动,D,点,例,3,25,时在一电导池中盛以浓度为,0.02 mol/dm,3,的,KCl,溶液,测得其电阻为,82.4 ,。,若在同一电导池中盛以浓度为,0.0025 mol/dm,3,的,K,2,SO,4,溶液,测得其电阻为,326.0 ,。,已知,25,时,0.02 mol/dm,3,的,KCl,溶液的电导率为,0.2768 S/m,。,试求:,(1),电导池常数;,(2)0.0025 mol/dm,3,的,K,2,SO,4,溶液的电导率和摩尔电导率。,解:,(1),电导池常数,K,cell,(=,l,/,A,s,)=,KCl,/,G,KCl,=,KCl,R,KCl,= 0.276882.4 m,-1,= 22.81 m,-1,(2) 0.0025 mol/dm,3,的,K,2,SO,4,溶液的电导率,K2SO4,=,K,cell,/,R,K2SO4,=(22.81/326.0) Sm,-1,= 0.06997 Sm,-1,0.0025 mol/dm,3,的,K,2,SO,4,的溶液的摩尔电导率,m,K2SO4,=,K2SO4,/,c =,0.06997/2.5 Sm,2, mol,-1,=0.02799 Sm,2, mol,-1,3.,浓度对电导的影响,(,2,),摩尔电导率与浓度的关系,(,1,),电导率与浓度的关系,摩尔电导率与浓度的关系为,m,=,/c,,,柯尔劳施(,Kohlrausch,),:在,很稀,的溶液中,,强电解质,的摩尔电导率与其浓度的平方根成直线关系,即:,通过,外推法,得到,(,3,)摩尔电导率与浓度的定量表示,对弱电解质,c,B,m,,,不遵守,Kohlrausch,经验公式。无法由实验准确测得弱电解质的无限稀释摩尔电导率。,m,(,KCl,),0.01499,m,(,KNO,3,),0.01450,0.00049,m,(,LiCl,),0.01150,m,(LiNO,3,),0.01101,0.00049,0.00349,0.00349,m,单位:,S m,2,mol,-1,4.,离子独立运动定律和离子的摩尔电导率,(1),柯尔劳施离子独立运动定律,在无限稀释溶液中,离子彼此独立运动,互不影响,无限稀释电解质的摩尔电导率等于无限稀释时阴、阳离子的摩尔电导率之和,。电解质,C,+,A,-,的无限稀释摩尔电导率为:,(,2,)弱电解质无限稀释摩尔电导率的求法,(,3,)无限稀释时离子摩尔电导率的求法,对于,1-1,价型的电解质,(离子迁移数可测),P12,给出了,25,时部分离子的摩尔电导率。,由表,7-3-2,可得如下结论:,离子极限摩尔电导按,Li,+,、,Na,+,、,K,+,顺序递增;,H,+,、,OH,-,离子的极限摩尔电导的数值最大。,H,+,离子的特殊迁移机理:氢键传递,思考:为什么,H,+,、,OH,-,离子的极限摩尔电导的数值最大呢?,5.,应用举例,(1),柯尔劳施公式可以求算未知离子的摩尔电导率,特别是可以利用已知物的摩尔电导率求出未知物的摩尔电导率。,例:,由实验测定并外推知,25,时,HCl,、,CH,3,COONa,和,NaCl,极限摩尔电导率分别是,426.16,10,-4,、,91.0110,-4,和,126.45 S,m,2,mol,-1,仅在手册中查到,H,+,的极限摩尔电导率是,349.8210,-4,Sm,2,mol,-1,求,Cl,-,的极限摩尔电导率。由于,CH,3,COOH,是弱电解质,实验外推法不易测准其极限摩尔电导率,试用柯尔劳施公式求之。,解:已知,m,HCl,= 426.1610,-4,Sm,2,mol,-1,m,H+,= 349.8210,-4,Sm,2,mol,-1,则,Cl,-,的,m,=,m,HCl,-,m,H+,=76.3410,-4,Sm,2,mol,-1,醋酸电离:,CH,3,COOH = H,+,+ CH,3,COO,-,解离前,c,0 0,解离平衡时,c,(1-,),c,c,电解质总的物质的量,已电离电解质的物质的,量,=,a,(2),计算弱电解质的解离度,及解离常数,K,(3),计算难溶盐的溶解度,难溶盐饱和溶液可认为是无限稀释,,盐,的,极限摩尔电导率,可查表得到。,水的电导率,相对,不能忽略,。,例,(P,13,),:,25,时,AgCl,饱和水溶液的电导率为,3.41,10,-4,Sm,-1,.,已知同温下水的电导率为,1.6010,-4,Sm,-1,计算,25,时,AgCl,的溶解度。,则运用摩尔电导率的公式可求难溶盐饱和溶液的浓度,c,s,:,解析:据公式 ,若能求出摩尔电导率 和电导率,,则可求该饱和溶液的浓度,c,,即知其溶解度。,查表知:,(4),检验水的纯度,这样,纯水的电导率应为,事实上,水的电导率小于 ,就认为是很纯的了,称为“电导水”,若大于这个数值,那肯定含有某种杂质。,纯水本身有微弱的解离:,查表得,(,5,)电导滴定,利用滴定过程中被滴定液的电导变化的转折点来确定滴定终点。,电导滴定的优点,:不用指示剂,对有色溶液和沉淀反应都能得到较好的效果,并能自动纪录。,7.4,电解质的平均离子活度因子及 德拜,-,休克尔(,Debye-Hkel,),极限公式,平均离子活度和平均离子活度因子,若,B,电解质,C,+,A,-,的质量摩尔浓度为,b,,活度为,a,,则,溶液化学,势,:,B,=,B,+,RTln,a,B,真实溶液,:,B,=,B,.,b,B,/b,真实溶液化学,势,: ,B,=,B,+,RTln,B,=,B,+,RTln(,B,.,b,B,/b,),设强电解质,C,+,A,-,完全电离,C,+,A,-,+,C,z,+,+,-,A,z,-,整体化学势:, =,+,RTln,(1),离子化学势:,+,=,+,+,RTln,+,-,=,-,+,RTln,-,又, =,+,+,-,-, =,(,+,+,-,-,),RTln,(,+,+,-,-,),RTln,(,+,+,-,-,),(2),(2),与,(1),比较得:,+,+,-,-,令,定义,离子的,平均活度,、,平均活度系数,与,平均质量摩尔浓度,分别为:,(,+,+,-,-,),+,+,(,b,/,b,),+,-,-,(,b,-,/b,),-,(,+,+,-,-,b,+,+,b,-,-,),/b,(,+,+,-,-,),(,b,+,+,b,-,-,),/b,b,/b,可测,b,由,b,可求,(强电解质),作业:,7,,,10,,,13,例:实验测得,25,时,0.1 mol/kg,H,2,SO,4,=,0.265,求,H,2,SO,4,的,活度。,解:对于,H,2,SO,4,+,= 2,-,= 1;,=,+,+,-,= 3;,b,+,=,+,b,= 2,b,b,-,=,-,b,=,b, b,=(,b,+,+,b,-,-,),1/,= (2,b,),2,b,1/3,= 4,1/3,b,a,=,(,b,/,b,)= 0.2654,1/3,0.1 = 0.0421,a = a,=,0.0421,3,= 7.4610,-5,其它价型依定义式类推,NaNO,3,z,+,1,z,-,1,称为,1-1,型电解质,BaSO,4,z,+,2,z,-,2,称为,2-2,型电解质,Na,2,SO,4,z,+,1,z,-,2,称为,1-2,型电解质,Ba(NO,3,),2,z,+,2,z,-,1,称为,2-1,型电解质,Na,3,PO,4,z,+,1,z,-,3,称为,1-3,型电解质,AlCl,3,z,+,3,z,-,1,称为,3-1,型电解质,
展开阅读全文