疲劳与断裂5课件

上传人:gb****c 文档编号:243340836 上传时间:2024-09-21 格式:PPT 页数:57 大小:1.02MB
返回 下载 相关 举报
疲劳与断裂5课件_第1页
第1页 / 共57页
疲劳与断裂5课件_第2页
第2页 / 共57页
疲劳与断裂5课件_第3页
第3页 / 共57页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第五章 断裂失效与断裂控制设计,5.1,结构中的裂纹,5.2,裂纹尖端的应力强度因子,5.3,控制断裂的基本因素,5.4,材料的断裂韧性,K,1c,5.5,断裂控制设计,返回主目录,1,第五章 断裂失效与断裂控制设计,结构中的缺陷是引起破坏的重要原因。最严重的缺陷是裂纹。,裂纹引起断裂破坏,如何分析、控制?,不会分析时,构件发现裂纹,报废。,20,世纪,50,年代后,“断裂力学”形成、发展,人们力图控制断裂、控制裂纹扩展。,裂纹从何而来?材料缺陷;疲劳萌生;,加工、制造、装配等损伤。,2,20,世纪,50,年代,美国北极星导弹固体燃料发动机壳体发射时断裂。材料为高强度钢,屈服强度,s,=1400MPa,,工作应力,900MPa,。,1965,年,12,月,英国,John Thompson,公司制造的大型氨合成塔在水压试验时断裂成二段,碎块最重达,2,吨。断裂起源于焊缝裂纹,发生断裂时的试验应力仅为材料屈服应力的,48%,。,5.1,结构中的裂纹,按静强度设计,控制工作应力,。,但在,时,结构发生破坏的事例并不鲜见。,20,世纪,80,年代初,某电站大型汽轮机转子轴断裂。,3,低应力断裂:,在静强度足够的情况下发生的断裂,。,低应力断裂是由缺陷引起的,缺陷的最严重形式是裂纹。裂纹,来源于材料本身的冶金缺陷或加工、制造、装配及使用等过程的损伤。,中心裂纹,工程常见裂纹,2a,s,W,B,s,边裂纹,a,s,s,表面裂纹,2c,a,t,s,s,4,剩余强度,:,受裂纹影响降低后的强度。,载荷或腐蚀环境作用,正常工作应力,可能,破坏,破坏,裂纹尺寸,使用时间,a),裂纹扩展曲线,剩余强度,裂纹尺寸,b),剩余强度曲线,最大设计应力,载荷,裂纹,应力集中,严重,结构或构件,强度削弱,裂纹扩展,剩余强度下降,在大的偶然载荷下,剩余强度不足,发生破坏。,在正常使用载荷下,裂纹扩展,直至最后断裂。,5,4.,临界裂纹尺寸如何确定?,结构中可以允许多大的初始裂纹?,有裂纹的构件扩展到发生破坏的少剩余寿命?,需要回答下述问题:,1.,裂纹是如何扩展的?,2.,剩余强度与裂纹尺寸的关系如何?,3.,控制含裂纹结构破坏与否的参量是什么?,如何建立破坏(断裂)判据?,这些问题必须借助于断裂力学才能解决。,6,Fracture is a problem that society has faced for as long as there have been man-made structures. The problem may actually be worse today than in previous centuries, because more can go wrong in our complex technological society.,从人类开始制造结构以来,断裂就是社会面对的一个问题。事实上,现在这个问题比过去一些世纪更严重,因为在我们的复杂技术社会中会有更多的错误出现。,7,Fortunately, advances in the field of fracture mechanics have helped to offset some of the potential dangers. Our understanding of how material fail and our ability to prevent such failures has increased considerably since World War II. Much remains to be learned, however, and existing knowledge of fracture mechanics is not always applied when appropriate.,所幸的是,断裂力学的发展帮助我们避免了一些潜在的危险。我们对材料如何破坏的理解、避免这类破坏发生的能力,自二次世界大战以来已显著增加。然而,还有许多要研究,已有的断裂力学知识也并未总是在适当的时候得到应用。,8,5.2,裂纹尖端的应力强度因子,裂纹的三种基本受载形式:,s,s,x,y,z,t,t,x,y,z,1,型,(,张开型,):,承受与裂纹面垂直的正应力,,,裂纹面位移沿,y,方向,裂纹张开。,2,型,(,滑开型,):,承受,xy,平面内的剪应力,,,裂纹面位移沿,x,方向,裂纹面沿,x,方向滑开。,3,型,(,撕开型,):,承受是在,yz,平面内的剪应力,,,裂纹面位移沿,z,方向,裂纹沿,z,方向撕开。,t,t,x,y,z,1,型,2,型,3,型,9,要使裂纹扩展,必须,0,。,即只有拉应力才能引起裂纹的张开型扩展。,工程中最常见的、危害最大的是,I,型裂纹。,讨论含有长为,2a,的穿透裂纹的无限大平板,二端承受垂直于裂纹面的拉应力,作用的情况。,s,s,x,y,2,a,dx,dy,r,q,s,y,s,x,t,x,y,在距裂尖,r,,与,x,轴夹角为,处,取一尺寸为,d,x,、,dy,的微面元;,利用弹性力学方法,,可得到裂纹尖端附近任一点,(r,),处的正应力,x,、,y,和剪应力,xy,。,10,用弹性力学方法,得到裂纹尖端附近任一点,(r,),处的正应力,x,、,y,和剪应力,xy,为:,所讨论的是平面问题,故有,yz,=,zx,=0,;,对于平面应力状态,还有,z,=0,。,若为平面应变状态,则有,z,=,(,x,+,y,),。,s,s,x,y,2,a,dx,dy,r,q,s,y,s,x,t,x,y,s,s,q,y,a,r,=,+,2,2,1,cos,q,q,2,3,2,sin,sin,t,s,q,q,q,xy,a,r,=,2,2,2,3,2,sin,cos,cos,s,s,q,x,a,r,=,-,2,2,1,cos,q,q,2,3,2,sin,sin,(5-1),11,断裂力学关心的是裂纹尖端附近的应力场。,上式是裂尖应力场的主项,还有,r,0,阶项等。,r,0,时,应力,ij,以,r,-1/2,的阶次趋于无穷大;,其后,r,0,阶项等成为次要的,可以不计。,(5-1),式可写为:,s,p,f,q,ij,ij,K,r,=,1,2,(,),K,a,1,=,s,p,式中:,r,,,ij,趋于零;但显然可知,当,=0,时,在,x,轴上远离裂纹处,应有,y,=,,且不受,r,的影响。故此时应以其后的,r,0,阶项为主项。,s,s,x,y,2,a,dx,dy,r,q,s,y,s,x,t,x,y,12,K,反映了裂尖应力场的强弱;足标1表示是1型。,ij,越大,,K,越大;,裂纹尺寸,a,越大,,K,越大。,K,的量纲为应力长度,1/2,,常用,MPa,。,m,裂尖的,应力强度因子,K,1,:,K,a,1,=,s,p,(5-1),式是中心穿透裂纹无穷大板,的解,。,断裂力学研究表明,,K,1,可以更一般地写为:,K,a,f,a,W,1,=,s,p,(,.,.,.,),f(a,W,.),为几何修正,函,数,,可查手册。,特别地,当,aw,或,a/w,0,时,即,对于承受拉伸的无限宽中心裂纹板,,f=1,;,对于无限宽单边裂纹板,,f=1.12,。,13,Linear elastic fracture mechanics (LEFM) is based on the application of the theory of elasticity to bodies containing cracks or defects. The assumptions used in elasticity are also inherent in the theory of LEFM: namely, small distributions and general linearity between stress and strain.,线弹性断裂力学是弹性理论在含裂纹体中的应用。,弹性理论所用的假设同样保留在线弹性断裂力学理论中,即小变形假设和应力,-,应变一般呈线性的假设。,14,The general form of the LEFM equations is given as follows:,As seen a singularity exists such that as r, the distance from the crack tip, tends toward zero, the stress go to infinity.,s,p,f,q,ij,ij,K,r,=,1,2,(,),线弹性断裂力学方程的一般形式给出如下:,可见有奇异性存在,当到裂尖的距离,r,趋近于零时,应力趋于无穷大。,15,Since materials plastically deform as yield stress is exceeded, a plastic zone will form near the crack tip. The basis of LEFM remains valid, though, if this region of plasticity remains small in relation to overall dimensions of crack and cracked body.,因为超过屈服应力后材料发生塑性变形,在裂纹尖端附近将形成塑性区。然而,如果塑性区与裂纹和含裂纹体的尺寸相比很小,线弹性断裂力学就仍然是正确的。,16,5.3,控制断裂的基本因素,作用,(,、,a,),越大,抗力,(,K,1C,),越低,越可能断裂,。,裂纹尺寸和形状,(,先决条件,),应力大小,(,必要条件,),材料的断裂韧性,K,1C,(,材料抗力,),含裂纹,材料抵抗断裂能力的度量,。,断裂三要素,作用,抗力,K,是,低应力脆性断裂(线弹性断裂)发生与否的控制参量,断裂判据可写为:,K,f,a,W,a,=,(,),L,s,p,K,c,1,17,f,是裂纹尺寸,a,和构件几何,(,如,W),的函数,查手册;,K,1C,是断裂韧性,(,材料抗断指标,),,,由试验确定。,这是进行抗断设计的基本控制方程。,或,K,K,1C,K,f,a,W,a,=,(,),L,s,p,K,c,1,断裂判据:,K,由线弹性分析得到,适用条件是裂尖塑性区尺寸,r,远小于裂纹尺寸,a,;即:,a,K,ys,2,5,1,2,.,(,),s,K,1C,是平面应变断裂韧性,故厚度,B,应满足:,B,K,ys,2,5,1c,2,.,(,),s,18,1),已知,、,a,,算,K,,选择材料,保证不发生断裂;,2),已知,a,、材料的,K,1c,,确定允许使用的工作应力,;,3),已知,、,K,1c,,确定允许存在的最大裂纹尺寸,a,。,一般地说,为了避免断裂破坏,须要注意:,抗断设计,:,基本方程:,K,f,a,W,a,=,(,),L,s,p,K,c,1,低温时,材料,K,1c,降低,注意发生低温脆性断裂。,K,1c,较高的材料,断裂前,a,c,较大,便于检查发现裂纹。,当缺陷存在时,应进行抗断设计计算。,控制材料缺陷和加工、制造过程中的损伤。,19,解:,1,)不考虑缺陷,按传统强度设计考虑。,选用二种材料时的安全系数分别为:,材料,1,:,n,1,=,ys1,/,=1800/1000=1.8,材料,2,:,n,2,=,ys2,/,=1400/1000=1.4,优,合格,2,)考虑缺陷,按断裂设计考虑。,由于,a,很小,对于单边穿透裂纹应有,或,c,K,a,K,1,1,12,.,1,=,p,s,a,K,c,p,s,12,.,1,1,例,1,:某构件有一长,a,=1mm,的单边穿透裂纹,受拉,应力,=1000MPa,的作用。试选择材料。,材料,1,:,ys1,=1800Mpa,,,K,1C1,=50MPa,;,材料,2,:,ys2,=1400Mpa,,,K,1C2,=75MPa,;,m,m,20,选用材料,1,,将发生低应力脆性断裂;,选用材料,2,,既满足强度条件,也满足抗断要求。,材料断裂应力为:,a,K,c,p,s,12,.,1,1,选用材料,1,:,1c,=50/1.12(3.14,0.001),1/2,=796MPa ,断裂,安全,注意,,a,0,越小,,K,1C,越大,临界断裂应力,c,越大。,因此,提高,K,1C,,控制,a,0,,利于防止低应力断裂。,21,压力容器直径大,曲率小,可视为承受拉伸应力的无限大中心裂纹板,有:,或,c,K,a,K,1,1,=,p,s,2,1,),(,1,s,p,c,K,a,解:由球形压力容器膜应力计算公式有:,=pd/4t=5,4/(4,0.01)=500MPa,例,2,:球形压力容器,d=5m,,承受内压,p=4MPa,,,厚度,t=10mm,,有一长,2,a,的穿透裂纹。已知,材料,K,1C,=80MPa,。求临界裂纹尺寸,a,c,。,m,22,在发生断裂的临界状态下有:,故得到:,a,c,=(1/3.14)(80/500),2,=0.0081m=8.1mm,2,1,),(,1,s,p,c,K,a,=,c,; ,=pd/4t,若内压不变,容器直径,d,,,,,a,c,,,抗断裂能力越差。,内压,p,,则,,临界裂纹尺寸,a,c,;,材料的,K,1C,,临界裂纹尺寸,a,c,;,可知:,23,低应力断裂:在静强度足够的情况下发生的断裂,。,剩余强度,:,受裂纹影响降低后的强度。,工程中最常见的、危害最大的是,I (,张开,),型裂纹。,用弹性力学方法可以,得到裂纹尖端附近任一点,(r,),处的正应力,x,、,y,和剪应力,xy,为:,s,p,f,q,ij,ij,K,r,=,1,2,(,),K,a,1,=,s,p,式中:,本章基本概念,应力强度因子,K,反映了裂尖应力场的强弱;,K,的量纲为应力长度,1/2,,常用,MPa,。,m,24,裂尖的,应力强度因子,K,1,可以更一般地写为:,K,a,f,a,W,1,=,s,p,(,.,.,.,),对于承受拉伸的无限宽中心裂纹板,,f=1,;,对于无限宽单边裂纹板,,f=1.12,。,裂纹尺寸和形状,作用应力,材料断裂韧性,K,1C,断裂三要素,或,K,K,1C,K,f,a,W,a,=,(,),L,s,p,K,c,1,断裂判据:,抗力,作用,25,When designing a structure against fracture, there are three critical variables that must be considered: applied stress, flaw size, and the fracture toughness of material. Fracture mechanics provides a mathematical relationship between these quantities. A knowledge of two quantities is required to compute the third.,在结构抗断设计时,必须考虑三个关键因素:作用应力、缺陷尺寸和材料的断裂韧性。断裂力学给出了这些量间的数学关系。要计算第三个量,需要知道另外二者。,26,The fracture design methodology should be based on the available date, such as material properties, environment, and the loading on the structure. If,K,1C,date are available and the design stress is low, LEFM may be appropriate.,断裂设计方法应当以可用数据为基础,如材料性能、使用环境及作用于结构的载荷。如果有,K,1C,数据可用且设计应力低,用线弹性断裂力学是恰当的。,27,习题:,5-1,,,5-7,再 见,第一次课完,请继续第二次课,返回主目录,28,第五章 断裂失效与断裂控制设计,5.1,结构中的裂纹,5.2,裂纹尖端的应力强度因子,5.3,控制断裂的基本因素,5.4,材料的断裂韧性,K,1c,5.5,断裂控制设计,返回主目录,29,K,f,a,W,a,=,(,),L,s,p,K,c,1,断裂判据:,抗力,作用,作用,K=,f,(,s,a, .),由力学分析得到;,弹性力学方法,有限元法,手册等。,抗力,K,1C,由材料断裂实验获得;,按标准试验方法,(,如,GB4161-84 ),。,30,5.4,材料的断裂韧性,K,1c,L=4W,W,a,P,三点弯曲(,B=W/2,),1,)标准试件,( GB4161-84 ),应力强度因子:,),(,7,.,38,),(,6,.,37,),(,8,.,21,),(,6,.,4,),(,9,.,2,2,/,9,2,/,7,2,/,5,2,/,3,2,/,1,2,/,3,W,a,W,a,W,a,W,a,W,a,BW,PL,K,+,-,+,-,=,2,孔,f,0.25W,P,P,a,W,1.25W,1.2W,0.55W,紧凑拉伸(,B=W/2,),裂纹预制:,电火花,切割一切口,使用钼丝直径约,0.1mm,。用疲劳载荷预制裂纹,应使,D,a,1.5mm,。,疲劳载荷越小,裂纹越尖锐,所需时间越长。为保证裂纹足够尖锐,要求循环载荷中,K,max,(2/3)K,1c,。,31,X-Y,记录仪,P,V,2,)试验装置,监测载荷,P、,裂纹张开位移,V,得到,试验,P-V,曲线,确定裂纹开始扩展时的载荷,P,Q,和裂纹尺寸,a,,,代入应力强度因子表达式,,即可,确定,K,c,。,P,P,试件,试验机,放大器,力传感器输出,P,引伸计输出,V,32,3) P,Q,的确定:,若在,P,5,前无载荷大于,P,5,, 则取,P,Q,=P,5,;,若在,P,5,前有载荷大于,P,5,, 则取该载荷为,P,Q,。,作比,P-V,线性部分斜率小,5%,的直线,交,P-V,于,P,5,。,P,max,P,0,V,P,5,0,0,P,5,P,max,P,Q,=P,max,P,max,P,Q,P,Q,=P,5,P,5,试验有效条件,P,max,/ P,Q, 2.5(,K,1c,/,s,ys,),2,后,,K,c,最小,,平面应变断裂韧性,K,1c,。,K,1c,是材料的平面应变断裂韧性,是材料参数;,K,c,是材料在某给定厚度下的临界断裂值。,35,平面应变厚度要求:,B 2.5(,K,1c,/,s,ys,),2,预制裂纹尺寸:,D,a,1.5mm,;,0.45W,a,0,+,D,a,0.55W,预制裂纹时的疲劳载荷:,K,max, (2/3),K,1c,。,汇总,: 试验有效性条件与尺寸要求,(,国标,GB4161-84),断裂载荷有效性:,P,max,/ P,Q,1.1 ;,裂纹平直度有效性:,a,-(,a,1,+,a,5,)/2)/,a, 2.5(,K,1c,/,s,ys,),2,=25 mm,P,Q,的,有效性:,P,max,/P,Q,=60.5/56=1.08,1.1,裂纹尺寸要求,:,D,a=,32-30=2mm1.5mm,;,0.45,a/W=,0.5330.55,裂纹平直度要求:,a,-(,a,1,+,a,5,)/2=0.15,0.1,a=,3.2,满足有效性条件,故,K,1c,=K,Q,=90.5 MPa,。,m,39,基本方程:,K,f,a,W,a,=,(,),L,s,p,K,c,1,5.5,断裂控制设计,As the stress intensity factor reaches a critical value K,C, unstable fracture occurs. This critical value of stress intensity factor is known as the fracture toughness of the material. The fracture toughness can be considered the limiting value of stress intensity just as the yield stress might be considered the limiting value of applied stress.,应力强度因子到达某临界值,K,C,,失稳断裂发生。这一应力强度因子的临界值被称为材料的断裂韧性。断裂韧性是应力强度因子的极限值,就象屈服应力是作用应力的极限值一样。,40,The fracture toughness varies with specimen thickness until limiting conditions (maximum constraint) are reached. Recall that maximum constraint conditions occur in the plane strain state. If the specimen thickness satisfy the plane strain requirements, The resulted fracture toughness is then named plane strain fracture toughness, writing as K,1c,.,断裂韧性在到达极限条件(约束最大)前是随试件厚度变化的。最大约束条件在平面应变状态出现。若试件厚度满足平面应变要求,所得到的断裂韧性才是平面应变断裂韧性,记作,K,1c,。,41,1),已知,、,a,,算,K,,选择材料,保证不发生断裂;,基本方程:,K,f,a,W,a,=,(,),L,s,p,K,c,1,2),已知,a,、材料的,K,1c,,确定允许使用的工作应力,;,3),已知,、,K,1c,,确定允许存在的最大裂纹尺寸,a,。,临界情况:,K,f,a,W,a,=,(,),L,s,p,=,K,c,1,c,c,5.5,断裂控制设计,42,若,B,尺寸足够,则上述值即为材料的断裂韧性,K,1c,。,例,2. W=200mm,的铝合金厚板,含有,2,a,=80mm,的中,心裂纹,若实验测得此板在,=100Mpa,时发生断,裂,试计算该材料的断裂韧性。,解: 由表,5-1,可知,对于中心裂纹板有:,;,),(,1,x,p,s,F,a,K,=,),2,/,sec(,),(,px,x,=,F,对于本题,,=2,a,/w=0.4,;,故断裂时的应力强度因子为:,=100(0.04,),1/2,(sec(0.2,),1/2,=39.4MPa,;,),(,1,x,p,s,F,a,K,=,m,43,例,3.,用上例中的铝合金材料,制作厚度,B=50mm,的,标准三点弯曲试样,若裂纹长度,a,=53mm,试估计试件发生断裂时所需的载荷。,解:,对于标准三点弯曲试样,有:,),(,57,.,14,),(,18,.,14,),(,20,.,8,),(,735,.,1,090,.,1,),(,4,3,2,W,a,W,a,W,a,W,a,W,a,f,+,-,+,-,=,),(,2,3,2,1,W,a,f,a,BW,PL,K,p,=,( W=2B,,,L=4W ),对于本题,,a,/W=53/100=0.53,代入后算得修正函数值为:,f(,a,/W)=1.5124,44,发生断裂时应有:,K,1,=K,1C,,即:,C,K,W,a,f,a,BW,PL,K,1,2,1,),(,2,3,=,=,p,=53200(N) =53.2 (KN),),(,3,2,1,2,W,a,f,a,L,K,BW,P,C,p,=,5124,.,1,),053,.,0,(,4,.,0,3,10,4,.,39,1,.,0,05,.,0,2,2,/,1,6,2,p,=,由上例知该材料,K,1C,=39.4MPa,;故有:,m,45,解:应用线性叠加原理,,图示载荷的作用等于拉伸与纯弯曲二种情况的叠加,故裂纹尖端的应力强度因子,K,可表达为:,K,K,K,+,=,P,P,P,P,M,M=Pe,、 分别是拉伸、弯曲载荷下的应力强度因子。,K,K,例,4,:边裂纹板条受力如图,,P,为单位厚度上作用,的力。已知,W=25mm,,,a,=5mm,,,e=10mm,,,材料,ys,=600Mpa,,,K,1C,=60MPa,。,试估计断裂时临界载荷,P,c,。,m,W,a,e,P,P,46,即有:,),05,.,1,(6P,e,2,/,W,a,p,=,K,对于边裂纹有限宽板,拉伸、弯曲载荷作用下的应力强度因子查表可知分别为:,拉伸:,t,=P/W,;,=0.2,;,=1.37,W,a,/,=,x,4,3,2,39,.,30,72,.,21,55,.,10,231,.,0,12,.,1,),(,x,x,x,x,x,+,-,+,-,=,F,);,(,x,p,s,F,a,=,K,t,即有:,W,a,P,/,37,.,1,p,=,K,弯曲:,b,=6Pe/W,2,;,=0.2,;,=1.05,);,(,x,p,s,F,a,=,K,b,W,a,/,=,x,4,3,2,0,.,14,08,.,13,33,.,7,40,.,1,122,.,1,),(,x,x,x,x,x,+,-,+,-,=,F,K,K,K,=,+,=,W,e,W,a,P,),/,3,.,6,37,.,1,)(,/,(,+,p,得到:,47,发生断裂时的临界状态下应有:,c,c,K,W,e,W,a,P,1,),/,3,.,6,37,.,1,)(,/,(,=,+,p,K,=,代入已知数据并注意统一单位,得到:,=3.07 MN,),0.025,/,01,.,0,3,.,6,37,.,1,(,005,.,0,14,.,3,025,.,0,60,),/,3,.,6,37,.,1,(,1,+,=,+,=,W,e,a,W,K,P,c,c,p,注意,:,上述结果是在线弹性假设下得到的。本题临界状态时,:,t,=P/W=123MPa,,,b,=6Pe/W,2,=,t,(6/25),,,二者叠加后也不过,ys,的,30%,,故结果是可信的。,48,低应力断裂:在静强度足够的情况下发生的断裂,。,剩余强度,:,受裂纹影响降低后的强度。,工程中最常见的、危害最大的是,I (,张开,),型裂纹。,用弹性力学方法可以,得到裂纹尖端附近任一点,(r,),处的应力场:,s,p,f,q,ij,ij,K,r,=,1,2,(,),K,a,1,=,s,p,式中:,小结,应力强度因子,K,反映了裂尖应力场的强弱;,K,的量纲为应力长度,1/2,,常用,MPa,。,m,49,裂尖的,应力强度因子,K,1,可以更一般地写为:,K,a,f,a,W,1,=,s,p,(,.,.,.,),对于承受拉伸的无限宽中心裂纹板,,f=1,;,对于无限宽单边裂纹板,,f=1.12,。,裂纹尺寸和形状,作用应力,材料断裂韧性,K,1C,断裂三要素,或,K,K,1C,K,f,a,W,a,=,(,),L,s,p,K,c,1,断裂判据:,抗力,作用,50,抗断裂设计基本认识:,低温时,材料,K,1c,降低,注意发生低温脆性断裂。,裂纹尺寸,a,与应力强度因子,K,的平方成正比,故断裂韧性,K,1c,增大一倍,断裂时的临界裂纹尺寸将增大到四倍。,控制材料缺陷和加工、制造过程中的损伤。,当缺陷存在时,应进行抗断设计计算。,K,1c,较高的材料,断裂前,a,c,较大,便于检查发现裂纹。,51,有待讨论的二个问题:,1.,表面裂纹的应力强度因子:,多为表面裂纹,t,2W,a,2c,工程中,的裂纹,加工缺陷,疲劳萌生,表面裂纹是三维问题,其应力强度因子的计算,,比平面二维问题复杂得多。,但对于断裂分析、疲劳裂纹扩展寿命估计有着十,分重要实际意义。将在第七章讨论。,52,用弹性力学方法,得到裂纹尖端附近任一点,(r,),处的正应力,x,、,y,和剪应力,xy,为:,s,s,x,y,2,a,dx,dy,r,q,s,y,s,x,t,x,y,2.,裂纹尖端材料的屈服,-,弹塑性断裂的问题:,s,s,q,y,a,r,=,+,2,2,1,cos,q,q,2,3,2,sin,sin,t,s,q,q,q,xy,a,r,=,2,2,2,3,2,sin,cos,cos,s,s,q,x,a,r,=,-,2,2,1,cos,q,q,2,3,2,sin,sin,(5-1),在裂纹线上,,=0,, ,裂尖材料屈服。,s,s,y,a,r,=,2,r,p,a,x,y,ys,A,B,D,o,H,K,53,As is well-known, materials develop plastic strains as the yield stress is exceeded in the region near the crack tip. The amount of plastic deformation is restricted by the surrounding material, which remains elastic. The size of this plastic zone is dependent on the stress conditions of the body.,众所周知,在裂纹尖端附近区域超过屈服应力后会发生塑性应变。塑性变形的程度受到周围弹性材料的约束。塑性区尺寸取决于物体的应力条件。,54,Plane stress condition:,In a thin body, the stress through the thickness (,z,) cannot vary appreciable due to the thin section. Because there can be no stress normal to a free surface,z,=0 through the section and a biaxial state of stress result.,x,z,y,在薄截面物体中,穿过厚度的应力,z,不可能有什么变化。因为自由表面不可能有法向应力,故整个截面有,z,=0,,成为双轴应力状态。,55,In a thick body, the material is constrained in the z direction due to the thickness of the cross section and,e,z,=0, resulting in a plane strain condition. Due to Poissons effect, a stress,z, is developed in the z direction. Maximum constraint conditions exist in the plane strain condition, and consequently the plastic zone size is smaller than that developed under plane stress conditions.,x,z,y,在厚物体中,因为截面厚,材料在,z,方向受到约束且,e,z,=0,,给出平面应变状态。由于泊松效应,在,z,方向发生应力,z,。平面应变下约束最大,故其塑性区尺寸小于平面应力情况。,56,习题:,5-3,,,5-4,本章完,再见!,返回主目录,57,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!