220KV电力系统继电保护和自动装置设计毕业设计

上传人:痛*** 文档编号:202576414 上传时间:2023-04-22 格式:DOC 页数:25 大小:477.82KB
返回 下载 相关 举报
220KV电力系统继电保护和自动装置设计毕业设计_第1页
第1页 / 共25页
220KV电力系统继电保护和自动装置设计毕业设计_第2页
第2页 / 共25页
220KV电力系统继电保护和自动装置设计毕业设计_第3页
第3页 / 共25页
点击查看更多>>
资源描述
目 录1.、电力系统继电保护和自动装置的配置(1)线路继电保护配置(2)自动重合闸的配置(3)微机保护装置简介2 、系统运行方式的制定和变压器中性接地点的选择(1)系统运行方式的制定(2)变压器中性接地点的选择3、系统最大负荷的潮流分布(1)系统中各元件的主要参数(2)系统潮流分布估算4、 短路电流的计算(1)正序、负序、零序等值阻抗图(2)短路电流计算结果5、继电保护装置的整定计算及校验(1)高频保护的整定计算原则(2)距离保护的整定计算原则(3)零序电流保护的整定计算原则6、总结参考文献23一设计总原则:本设计以原电力部生产司1979年颁布的110220kV电网继电保护和自动装置运行条例和水利电力出版社1993年颁布的电力系统继电保护和自动装置整定计算的有关规定和要求为依据。同时,根据电网结构和运行要求的不同,在满足继电保护“四性”(速动性、选择性、灵敏性、可靠性)的前提下,求得最佳方案,采用性能比较稳定的新型设备,以适应电力系统快速发展的要求。二. 电力系统继电保护和自动装盟的配置(1)线路继电保护配置保护方式的选择对电力系统的安全运行有直接的影响。选择保护方式时,在满足继电保护“四性”要求的前提下,应力求采用简单的保护装置来达到系统提出的要求,只有当简单的保护不能满足要求时,才采用较复杂的保护。电力部颁发的继电保护和安全自动装置枝术规程规定,对110220kV、中性点直接接地电网中的线路,应装置反应接地短路和相间短路的保护。该规程又规定,电力设备和线路的短路保护应有主保护和后备保护,必要时可再增设辅助保护。在110220kV中性点直接接地的电网中,线路的相间短路保护及单相接地短路保护均应动作于断路器使其跳闸。在下列情况下,应装设全线任何部分短路时均能速动的保护装置:根据系统稳定要求有必要时;线路发生三相短路故障,使厂用电或重要用户母线电压低于额定电压的60%,且其保护不能无时限和有选择地切除短路故障时;若某些线路采用全线速动保护能显着简化电力系统保护,并提高保护的选择性、灵敏性和速动性时。规程规定,ll0kV线路的后备保护宜采用远后备方式;220kV线路则宜采用近后备方式,如能实现远后备方式时,则宜采用远后备方式或同时采用远、近后备结合的方式。220kV线路的保护可按以下原则配置。对于单侧电源单回路线路,可装设三相多段式电流电压保护作为相间短路的保护。但若不能满足灵敏度要求,则应装设多段式距离保护。对于接地短路,宜装设带方向性元件或不带方向性元件的多段式零序电流保护,对某些线路,若装设带方向性接地距离保护可以明显改善整个电力系统接地保护性能时,可装设接地距离保护,并辅之以多段式零序电流保护。对于双电源单回路线路,可装设多段式距离保护,若不能满足灵敏度和速动性要求时,则应加装高频保护作为主保护,把多段式距离保护作为后备保护。在正常运行方式下,若保护安装处短路且无时限电流速断保护装置能够动作时,可装设此种保护作为辅助保护。根据规程规定和系统的具体情况,选择220k/V线路保护时作了如下考虑:由于本系统允许切除故障的时间为0.ls,为保证系统运行稳定,当220kV输电线路任何地点发生短路故障时,继电保护切除故障线路的时间都必须小于0.ls,因而,凡是不能在0.ls内切除全线路故障的保护装置都不宜作为主保护。基于这种考虑,对双电源供电的单回路线路和环网内的线路,宜采用高频保护作为主保护。具体而言,环网内的线路AB、AE、BE,双电源供电线路的CD线、DE线、EF线、FG线、GH线均采用高频保护作为主保护。后备保护采用距离保护作为相间短路保护,零序电流保护作为接地短路保护,对单侧电源的辐射线路HI线可按线路-变压器组考虑,从而可以采用较简单的保护,因此.对线路扣可选用距离保护作为相间短路保护,零序电流保护作为接地短路保护。(2)自动重合闸的配置在电力系统的故障中,大多数是送电线路特别是架空线路)的故障。运行经验表明,架空线路故障大都是瞬时性”的,在线路被断开以后再进行一次合闸能大大提高供电的可靠性。为此,在电力系统中采用了自动重合闸(缩写为ZCH)。即当断路器跳闸以后,这种装置能够自动地将断路器重新合闸。在电力系统中采用重合闸的技术经济效果,主要地可归纳如下:大大提高供电的可靠性,减少线路停电的次数.特别是对单侧电源的单回线路尤为显著;在高压输电钱路上采用重合闸,可以提高电力系统并列运行的稳定性;在电网的设计与建设过程中,有些情况下由于考虑重合闸的作用,可以暂缓架设双回线路,以节约投资;对断路器本身,由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正作用。采用重合闸以后,当重合于永久性故障上时,它也将带来一些不利的影响,如:使电力系统又一次受到故障的冲击;使断路器的工作条件变得更加严重,因为它要在很短的时间内,连续切断两次短路电流。自动重合闸装置应按下列规定装设:在lkV及以上的架空线路和电缆与架空的混合线路中,当具有断路器时,应装设自动重合闸装置;旁路断路器和兼作旁路的母线联络断路器或分段断路器,宜装设自动重合闸装置;低压侧不带电源的降压变压器,应装设自动重合闸装置;必要时母线可装设自动重合闸装置。各种自动重合闸装置中,综合重合闸为较先进的一种。本设计采用微机保护装置,系统中所有线路均装设综合重合闸。综合重合闸的一些基本原则:单相接地短路时跳开单相,然后进行单相重合,如重合不成功则跳开三相而不再进行重合。各种相间短路时跳开三相,然后进行三相重合,如重合不成功.仍跳开三相,面不再进行重合。当选相元件拒绝动作时,应能跳开三相并进行三相重合。对于非全相运行中可能误动作的保护,应进行可靠的闭锁,对于在单相接地时可能误动作的相间保护,应有防止单相接地误跳三相的措施。当一相跳开后重合闸拒绝动作时,为防止线路长期出现非全相运行,应将其他两相自动断开。任意两相的分相跳闸继电器动作后,应联跳第三相,使三相断路器均眺闸。无论单相或三相重合闸,在重合不成功之后,均应考虑能加速切除三相.即实现重合闸后加速。在非全相运行过程中,如又发生另一相或两相的故障,保护应能有选择性地予以切除,上述故障如发生在单相重合闸的脉冲发出以前,则在故障切除后能进行三相重合。如发生在单相重合闸脉冲发出以后,则切除三相不再进行重合。对空气断路器或液压传动的油断路器,当气压或液压低至不允许实行重合闸时,应将重合闸回路自动闭锁,但如果在重合闸过程中下降到低于允许值时,则应保证重合闸动作的完成。在综合重合闸的接线中,应考虑能实现综合重合闸、只进行单相重合闸或三相重合闸以及停用重合闸的各种可能性。线路配置:主保护采用方向高频;后备保护距离保护作为相间短路保护,零序电流保护作为接地短路保护。(3)微机保护装置简介本系统采用WXB-15型微机高压线路保护装置。WXB-l5型系列装置是使用硬件实现的成套微机高压线路保护装置,适用于110kV500kV各电压等级的输电线路。主保护为快速方向高频保护。WXB-15型微机方向高频保护的推出,为同一回路配置相同硬件不同原理的双套主保护提供了可能。a. 本装置硬件特点采用了多单片机并行工作的硬件结构,装置设置了四个硬件完全相同的CPU插件,每个插件独立完成一种保护功能。采用电压频率转换原理构成的模数转换器,它具有工作稳定、精度高、接口简单和调试方便等优点。跳闸出口回路采用三取二方式,提高了整套保护装置的可靠性。采用液晶显示、菜单操作、使人机对话更加简单、灵活。 具有RS232接口,可将全站微机保护就地联网。保护配置示意图如表2.4所示。表2.4 (直接写:表1)保护配置示意图CPUCPU1CPU2CPU3CPU4 保护功能型号高频距离高频零序高频负序方向高频相间距离接地距离零序综重WXB-15WXB-15Ab. 各种保护配置及其特点快速方向高频保护它是由突变量方向元件、零序和负序方向元件完成的快速方向高频保护构成WXB-l5系列微机保护装置的主保护,由CPU1实现保护功能,可选用允许式或闭锁式。突变量方向元件具有明确的方向性且动作迅速。距离保护它是由三段式相间距离和接地距离构成的距离保护作为各套保护的基本配置,由CPU,实现。用于切除出口短路故障的快速I段的距离元件动作时间不大于llms,当系统发生第一次故障时,采用电压记忆保证方向性。若在振荡期间发生故障,刚采用负序方向元件把关,仅在出口完全三相对称短路时采用偏移特性。阻抗特性采用四边形特性。零序保护零序保护由CPU3实现,由四段全相运行时的零序保护和两段非全相运行时的不灵敏段零序保护构成。装置设置了3U0零序保护突变量闭锁元件,以防止CT断线时零序保护误动。综合重合闸综合重合闸由CPU.实现,设有单重、三笪、综重和停用四种方式,装置还设有M、N、P端子,以供外部不能选相的保护经本装置综重的选相元件选相跳闸。本装置各套保护均设有独立的选相元件,由相电流差突变量选相元件及阻抗选相元件来实现。综重的选相元件仅供外部无选相能力的保护经本装置出口处时使用。c. 主要技术数据额定数据 直流电压:220V或110V (订货注明)交流电压:相电压:100/V开口电压:100V交流电流:5A或lA (订货注明)频率:50Hz整定范围 距离元件:0.0599.9电流元件:0.05A99.9A 时词元件:保护跳闸时间:接地故障为0l2s;相间故障为04.5s(其他为015.9s)。精确工作范围距离元件:精确工作电压0. 5V;.精确工作电流(0.120)In或(0.240) In。零序方向元件,最小动作电压2V(固定);最小动作电流0.1In。突变量方向元件:最小动作电压4V;最小动作电流0.3In。三. 系统运行方式的制定和变压器中性接地点的选择(1)系统运行方式的制定在选择保护方式及进行整定计算时,都必须考虑系统运行方式变化带来的影响,所选用的保护方式应在各种运行方式下,都能满足选择性和灵敏性的要求。对过量保护来说,通常都是根据系统最大运行方式来确定保护的整定值,以保证选择性,因为只要在最大运行方式下能保证选择性,在其他运行方式下也一定能保证选择性。灵敏度的校验应根据最小运行方式来进行,因为只要在最小运行方式下,灵敏度符合要求,在其他运行方式下,灵敏度也一定满足要求,对某些保护(如电流电压联锁速断保护和电流速断保护),在整定计算时还要按正常运行方式来决定动作值或计算灵敏度。a. 最大运行方式根据系统最大负荷的需要,电力系统中的发电设备都投入运行(或大部分投入运行)且选定的接地中性点全部接地的系统运行方式称为最大运行方式。对继电保护来说,是短路时通过保护的短路电流最大的运行方式。b. 最小运行方式根据系统最小负荷,投入与之相适应的发电设备,且系统中性点只有少部分接地的运行方式为最小运行方式。在有水电厂的系统中,要考虑水电厂运行受水能状态限制的运行方式。对继电保护来说,是短路时通过保护的短路电流最小的运行方式。c. 正常运行方式根据系统正常负荷的需要,投入与之相适应数量的发电机、变压器和线路的运行方式称为正常运行方式。这种运行方式在一年内的运行时间最长。规定下列运行方式:I:电厂A、H、D、B所有机组和变压器均投入运行。A系统、D系统按最大容量发电,选定的接地中性点全部接地,环网闭环运行。I1:在I基础上AE停运;I2:在I基础上BE停运:I3:在I基础上AB停运;II:电厂B、D、H停一半机组,I、II系统按最小容量发电,电厂A停1100和150机组,调相机停一半,各站变压器均停一半(按与电厂容量配合原则)闭环运行。II1:在II基础上A停运。线路运行方式如表2.5所示。表2.5 (写:表2)线路的运行方式示意线 路名称最大运行方式最小运行方式A BA侧保护: I2 B侧:I1IIA EA侧: I2 E侧:I3IIB EB侧: I1 E侧:I3IIC DIIID EIIIE FIIIF GIIIG HIIIH IIII (2)变压器中性接地点的选择大接地系统发生接地短路时,零序电流的大小与分布和变压器中性接地点的数目与位置有密切的关系,中性接地点的数目越多,意味着系统零序总阻抗越小,零序电流越大,中性接地点的位置不同,则意味着零序电流的分布不同。通常,变压器中性接地位置和数目按以下两个原则考虑:一是使零电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;二是不使变压器承受危险的过电压,为此,应使变压器中性点接地数目和位置尽可能保持不变。变压器中性接地点的位置和数目的具体选择原则如下:a. 对单电源系统,线路末端变电站的变压器一般不应接,这样可以提高线路首端零序电流保护的灵敏度。b. 对多电源系统,要求每个电源点都有一个中性点接地,以防接地短路的过电压对变压器产生危害。c. 当一个变电站有多台变压器运行时,应将一部分变压器中性点接地,另一部分不接地。这样,当接地运行的变压器检修停运时,不接地变压器可以接地运行,从而使接地点的数目和位置相对不变。d. 对有三台以上变压器的220kV或110kV双母线运行的发电厂,一般按两台变压器中性点直接接地运行,并把它们分别接于两组不同母线上,当其中一台中性点接地变压器停用时,将另一台不接地的变压器的中性点直接接地。系统中HI线路属于单电源供电,其线路末端变压器不接地。调相机35kV侧变压器中的性点不接地,除此之外,变压器均采用部分接地方式,一台变压器中性点接地,另一台变压器中性点不接地。变压器中性点接地情况如表2.6所示。表2.6 (表三)变压器中性点接地情况表变 电 站 名 称ABDEFGHI变压器台数42222221220kV侧中性点接地变压器台数21111110四. 系统最大负荷的潮流分布(1)系统中各元件的主要参数计算系统中各元件的参数标么植时,取基准视在功率SR=100MVA,基准电压UR=UaN=230kV,其准电流IR=SR/UR=0.251kA,基准电抗XR=U/SR=2302/100=529。a. 发电机及等值系统的参数表2.7 发电机及等值系统的参数电机或系统名称电厂及系统的总容量/MVA每台机额定功率P/MVA额定电压Ue/KV定额功率因数cos正序电抗负序电抗最大最小%标么值%标么值A厂300150210025010.50.800.8518.3312.390.1560.198240.1900.2419B厂804042010.50.8015.10.6040.8758D厂200100210010.50.8518.330.1560.190H厂250125212513.80.8521.50.1460.178I 系统800.5241150.850.27(0.524)0.3294(0.639)II 系统2001502300.850.31(0.35)0.3782(0.427)E站60302301118.70.62318.50.617F站60302301118.70.62318.50.617注 表中,括号内的数据为最小运行方式时的电抗标么值。负序电抗按下列情况计算:对水电厂(B)的发电机,X2=1.45Xd,对系统的汽轮发电机(A、C、H、D)和I、II系统,X2=1.22Xd。计算举例:对凝汽式火电厂A、机组容量Sel=50/0.8=62.5MVA,Se2=100/0.85=117.647MVA。250MW的机组:正序电抗xd=12.39,折合到230kV的基准值正序的标么电抗值为XF1=0.19824负序电抗标么值为X2=1.220.19824=0.24192100MW的机组:正序电抗xd=18.33,折合到230kV的基准值正序电抗标么值为XF2=0.156负序电抗标么值为X2=1.220.156=0.190对B,一有多年调节水库的梯级电站,机组容量Se=20/0.8=25MVA。正序电抗xd=15.1,折合到230kV的基准值正序电抗标么值为XF3=0.604b. 变压器的参数及计算举例闸管变流设备一般都是通过变压器与电网连接的,因此其工作频率为工频初级电压即为交流电网电压。经过变压器的耦合,晶闸管主电路可以得到一个合适的输入电压,是晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分,减小电网污染。在变流电路所需的电压与电网电压相差不多时,有时会采用自耦变压器;当变流电路所需的电压与电网电压一致时,也可以不经变压器而直接与电网连接,不过要在输入端串联“进线电抗器”以减少对电网的污染。变压器的参数计算之前,应该确定负载要求的直流电压和电流,确定变流设备的主电路接线形式和电网电压。先选择其次级电压有效值U2,U2数值的选择不可过高和过低,如果U2 过高会使得设备运行中为保证输出直流电压符合要求而导致控制角过大,使功率因数变小;如果U2过低又会在运行中出现当=min时仍然得不到负载要求的直流电压的现象。通常次级电压、初级和次级电流根据设备的容量、主接线结构和工作方式来定。由于有些主接线形式次级电流中含有直流成分,有的又不存在,所以变压器容量(视在功率)的计算要根据具体情况来定。变压器次级相电压U2的计算整流器主电路有多种接线形式,在理想情况下,输出直流电压Ud 与变压器次级相电压U2有以下关系d UV B U K U K 2 = (5.39)其中KUV为与主电路接线形式有关的常数;KB为以控制角为变量的函数,设整流器在控制角=0和控制角不为0 时的输出电压平均值分别为Ud0和Ud,则KUV= Ud0/ U2,KB=Ud/Ud0。在实际运行中,整流器输出的平均电压还受其它因素的影响,主要为:电网电压的波动。整流元件(晶闸管)的正向压降。直流回路的杂散电阻。换相重叠角引起的电压损失。整流变压器电阻的影响。 变压器次级相电流有效值I2的计算一般的工业生产用晶闸管设备的负载都为电感性的,负载电流基本上是直流,因而晶闸管电流为方波。变 压器的各相绕组与一个(半波)或两个(桥式)晶闸管连接,所以变压器次级电流也为方波,其有效值I2与负载电流Id成正比关系,比例系数决定于电路的接线形式,所以(注:所引用公式不得标注为 5.45 .等格式,按1,2,3.等格式标注)如果负载为电阻性,则负载电流、晶闸管电流和变压器次级电流都不是方波,不能采用上式计算,要通过电路分析求取电流的方均根值。如果是电动机负载,其中的Id应取电动机的额定电流而不是堵转电流,因为堵转电流仅出现在启动后的很短的一段时间,这段时间变压器过载运行是允许的。变压器次级相电流有效值I1的计算整流变压器的初、次级电流都是非正弦波,对于不同的主电路接线形式两者的关系是不一样的。主电路为桥式接线时变压器次级绕组电流中没有直流分量,初、次级电流的波形相同,其有效值之比就是变压器的变比Kn。在半波电路中,变压器的次级电流是单方向的,包含着直流分量Id2和交流分量Ia2,i2= id2+ ia2,而直流成分是不能影响初级电流i1的。i1仅与ia2有关,i1= ia2/Kn。现以三相半波电路为例说明初级电流的计算方法。设负载为电感性,电感量足以消除负载电流的波动,i2的波形如图5-11 所示。次级电流的有效值为/ 3 2 d I = I ,次级电流中的直流成分为/ 3 d 2 d I = I ,根据电路理论,次级电流中的交流成分有效值为初级电流与次级交流电流之间成正比关系,为当变比为1时,I1与Ia2之间的关系称为网侧电流变换系数KI1,I1可表示为变压器容量的计算变压器的容量即变压器的视在功率,对于绕组电流中含有直流成分的变压器,由于初、次级的电流有效值之比不是变压器的变比,而两侧的电压之比却为变比,所以初级和次级的容量是不同的。设变压器初级容量为S1、次级容量为S2;初级和次级的相数分别为n1和n2,初、次级容量的计算公式分别为变压器的等效容量为初、次级容量的平均值,为c. 输电线路的参数及计算举例d. 电流互感器和电压互感器变化电压互感器是一种可以将高电压变为低电压,用于测量和保护回路中,我国规定PT的二次电压为100V,一次电压根据实际需要进行选择。其实PT也就相当于一个降压变压器的作用,由于在出厂时已经进行了封装,因此生产出的成品其变比是固定的,不可改变(2)系统潮流分布估算为了确定各线路的最大负荷电流并选择电流互感器的变化,应计算系统在最大开机情况下的潮流分布。为了简便,不计线路损耗。潮流分布计算结果如表2.8所示。系统潮流分布和L1变比的选择线路名称最大开机情况下的潮流分布/MVA最大负荷电流/kAL1的变化nLA B160+j112.9490.492600/5A E228+j175.0920.7221 200/5B E228+j175.0920.7221 200/5D C30+j18.6430.089600/5D E170+j105.3060.502600/5E F170+j120.0640.522600/5G F30j5.0640.076600/5H G17+j104.9360.501600/5H I80+j500.237600/5注:表中线路名称的第一个字母表示送端,如线路HI表示功率的方向从H变电站送到I变电站。五. 短路电流的计算(1)正序、负序、零序等值阻抗图根据系统中各元件参数计算结果和变压器中性点接地的情况,本系统的正序等值阻抗图如图2.7所示。图: 正序等值阻抗图(上图可以放大至半页)(2)短路电流计算结果短路电流计算主要对各线路在最大、最小运行方式下的短路进行计算。短路类型分为三相短路、二相短路、二相短路接地和单相短路接地。为了校验零序I段的保护范围,在各线路中点短路,然后求此线路在单相短路接地,两相短路接地时流过保护的零序电流。此外,还有距离保护和零序电流保护最大、最小分支系数的求取,求取时需要针对具体保护,考虑开机情况及断线与否,不考虑联络线的断线问题(联络线断开,则系统分裂为两个独立的部分)。短路电流计算结果如表2.9 所示(表中KK=0.5,表示保护线路中点短路保障)。表2.9 线路AB的短路电流计算结果 保护侧 故障点 序 短 电运行方式 路电流 流流过B侧保护的电流/kA流过A侧保护的电流/kAA母线故障KK=0.5B母线故障KK=0.5Id1Id2Id33Id0Id1Id2Id33Id0最大运行方式d(3)2.0542.6766d(2)1.0271.0271.33831.3383d(1)0.67870.67870.83621.37070.65550.65552.25823.1785d(1.1)1.36330.69030.82911.17321.59741.07921.78482.6619最小运行方式d(3)1.13101.5133d(2)0.56550.56550.75660.7566d(1)0.42990.42990.53291.02230.47120.47121.62152.3121d(1.1)0.81560.31540.61991.00650.97760.53561.52122.2765六. 继电保护装置的整定计算及校验(1)高频保护的整定计算原则系统中发生故障时,高频保护将某种电量(简称判别量)转换为高频电波,再借助于通常传给对侧,然后,线路每一侧按照对侧与本侧判别量之间的关系来判断区内或区外故障。由于选取的判别量不同,判别量的传送方式和采用通道的情况不同,出现了各种型号的高频保护装置。目前广泛采用的高频保护按其工作原理的不同可以分为两大类,即方向高频保护和相差高频保护。方向高频保护的原理是比较被保护线路两端的功率方向;相差高频保护的原理是比较两端电流的相位,本系统采用方向高频保护。高频保护要以两侧判别量之间的关系来判断故障的性质,因此,线路两侧的高频保护相当于一个整体,必须同时运行。为了使保护具有良好的动作特性,要求线路两侧电流互感器的变比和型号相同,两侧保护的型号相同,保护装置的整定值也相同。高频负序功率方向保护的原理框图如图2.8所示。它的主要组成元件有两个,一个是起动元件,它在外部故障时起动发读机;另一个是方向元件,它在正向适中时准备好跳闸回路。起动元件采用反向(方向由线路指向母线)负序功率方向继电器KA_,方向元件采用正向(方向由母线指向线路)负序功率方向继电器KA+,为提高保护的可靠性,加装了负序电流元件I2,在内部故障时,KA不动作,外部故障时,近故障侧的KA_动作,发出高频信号闭锁两侧表保护,使之不跳闸。这种保护的结构比较简单,需进行整定计算的动作参数主要有起动元件KA_,方向元件KA+和负序电流元件I2三者的动作值,其整定办法如下所述。图2.8 高频闭锁负序功率方向保护原理框图a. 正向负序功率元件KA+的整定采用相敏负序功率元件时,正向负序功率元件的整定可简化为按负序电流进行计算。其整定值按下述两条件确定并选其中较大者。保证被保护线路末端故障时有足够的灵敏度 Idz(+)= 式中,I2min为被保护线路末端短路时,流经本侧的最小负序电源;躲开空载线路两相先合闸时出现的稳态负序电容电流(I2c) Idz(+)=KkI2cL 式中,Kk为计及负序电容电流暂态过程的可靠系数,取2.53; L为被保护线路的全长,以km计。 I2c为线路一侧投入电源时,由于三相触头不同时合闸引起的负序电容电流每公里长度的稳态值。查表可知,线路电压为220kV 等级,此时二相先合闸时的充电电容电流值为0.127A/km。b. 反向功率元件KA_的整定c. 负序电流元件动作电流Idz2的整定d. 校验(2)距离保护的整定计算原则距离保护是以反映从故障点到保护安装处之间阻抗大小的,阻抗继电器为主要元件,动作时限具有阶梯特性的保护装置。当故障点至保护安装处之间的实际阻抗小于整定值时,故障点发生在保护范围之内,保护动作。配上方向元件及时间元件,即组成了具有阶梯特性的距离保护装置。当故障线路中的电流大于阻抗继电器的允许精工电流时,保护装置的动作性能与通过保护装置的故障电流大小无关。距离保护的整定计算 距离段的整定计算:当被保护线路中无分支接线时,按保护范围不伸出线路末段整定(8085%保护线路的正序阻抗计算)。即Zdz=KkZL(Kk=0.8-0.85)。当线路变压器组,按保护范围不伸出变压器整定。即Zdz=Kk(ZL+ ZB) Kk=0.7第段的动作时限为继电器本身的固有时限,通常取tdz0.06s当线路末段变电站为两台及以上变压器并列运行且变压器均装设有差动保护时,可以按躲开线路末段或按躲开终端变电站其它母线故障来整定计算。即:Zdz=KkZx1 Zdz=KkZxL+KkbZb (Kk=0.8-0.85) Kkb =0.75Zb:并联阻抗 ZxL:线路正序阻抗 距离段的整定计算1) 按与相邻线路距离保护段整定值配合来整定。Zdz=KkZL+ KkKfzminZdzZdz:相邻线路距离保护段动作阻抗。Kk =0.8 Kk=0.80.85。Kfzmin:最小分支系数,取最小值。 Kfzmin =(IBC/IAB) minA B CIAB IBC2) 躲过相邻变压器其它侧母线故障整定。Zdz =KkZzL+ KbKLZb 其中 Kk=0.8-0.85 。Kb=0.7。KL:变压器低压侧D母线故障时最小分支系数,一般取KL=0.5(见下图)A B DIAB IBDKL =(IBD/IAB) min3) 与相邻线路距离保护段整定值配合来整定。ZdzKkZxL +KkKbZdz. 保护配合时间:tt+t4) 按保证被保护范围末段短路时有足够的灵敏度整定。Zdz =KLmZL KLm:灵敏系数当L50Km时,KLm1.5,当L50-200Km时,KLm1.4,当L=200Km时,KLm1.3。5) 距离段灵敏度计算KLm = Zdz / ZL1.3-1.5线路终端无相邻元件配合可不整定段,但考虑发展也可设段。 距离保护段的整定计算1)动作阻抗按躲过最小负荷阻抗Zfhmin整定。对全阻抗继电器:对方向阻抗继电器:Kk=0.7,Kh: 返回系数,取1.151.25 Kzg:负荷自启动系数Ue: 电网额定电压lm:灵敏角fh:负荷阻抗角2)段的灵敏度系数作近后备时:KLm = Zdz / ZL1.5作远后备时:Klm = Zdz / (ZL+KzhmaxZLz)1.2KZhmax:相邻线路末段短路时,实际可能的最大分支系数。保护的动作时限为:tdz=tdzxLmax +tt取0.3-0.6秒。说明:本系统中有一条平行线BC,、段整定时间要考虑相继动作情况,精工电流校验Kjg=Idmin/Ijg2及阻抗继电器二次动作阻抗和分接点选择。 (3)零序电流保护的整定计算原则统计数据表明,在中性点直接接地系统的线路中,接地故障占故障次数的70%以上。因此,接地短路保护是高压输电线路的重要保护之一。接地短路的保护可以采用带零序电流补偿的接地距离保护或高频保护,也可以采用零序电流保护。运行方式及中性点的选择零序电流的分布只取决于零序网络,零序电流的大小则与正、负序网络有关。在计算零序电流的大小时,尤其要注意中性点运行方式和接地点的选择。计算的运行方式及中性点接地原则前面已经提及,现在只提出平行线路零序互感的问题。 当d点发生接地短路时,第、回线零序电流方向相同,可见产生零序互感磁通是起助磁作用的,其线路零序电抗都要增大。 I0 I0 平行线路内部故障 I0 I0 当d点发生故障时,第、回电流方向相反,这时,零序磁通是起去磁作用的,故其线路零序电抗均要减少。由此可见,求I0max时,应取I1kbmin,并具体问题具体分析对总 结本设计方案是根据有关的运行及整定条例进行的,力求达到继电保护装置的可靠性、选择性、速动性、灵敏性等“四性”的要求,确保技术指标。既要注意经济性,同时也要考虑到电网的发展。一.距离保护是反映保护安装处到故障点距离(或阻抗),并根据距离的远近而确定动作时间的一种保护装置。当短路点离保护安装处近时,其测量阻抗小,动作时间较短,当短路点离保护安装处远时,其测量阻抗大,动作时间较长,这就保证了有选择性的切除故障线路。另外,距离保护受到运行方式变化的影响较小,故作为相间故障的主保护,有足够的灵敏性和快速性。适用于多电源、运行方式多变化的复杂电网。二、高频保护是以输电线路载波通道作为通信通道的纵联保护。将线路两端的电流相位(或功率方向)转化为高频信号,然后利用输电线路本身构成一高频(载波)通道,将此信号送到对端,进行比较。因为该保护不翻印于被保护线路范围以外的故障,在定值选择上也不需要与下一条线路相配合,故不带动作延时,是一种无时限的快速原理保护。三、零序保护作为接地故障的主保护。一般当发生接地故障、振荡、非全相运行等情况下,电网才出现零序分量。因此,零序保护可以比较灵活反映。侧故障不会反映到侧,动作时间的整定可以从算起.因此,保证了快速性要求。另外,零序保护接线简单,可靠性高。线路遇到的接地故障比其它故障相对多,这就显得零序保护尤为重要。四、在电力系统中,大多数是架空线路的故障。且运行经验表明,架空线路故障大都是“瞬时性”的,在线路被继电保护快速断开以后,电弧即行熄灭,故障点的绝缘强度重新恢复。此时,如果把断开的线路断路器再合上,就能够恢复正常的供电。由此可见,在线路被断开以后再进行依次合闸,就有可能大大地提高供电的可靠性。所以,采用了重合闸装置(ZCH)。这样就大大提高了供电可靠性,减少了线路停电的次数,还可以对断路器本身由于机构不良或继电保护误动作而引起地跳闸起到纠正作用,也可以提高电力系统并列运行的稳定性。众所周知,继电保护的整定计算对系统的安全稳定运行和对重要用户的可靠连续供电等方面有着重要的作用和意义。对于保护工作者来说,更需要把理论与实际结合起来,不仅要考虑到整个装置的经济性,更要考虑到对于系统的稳定性和可靠性。通过这次设计,我感到收获很大,尤其是在计算过程中,运行方式的选择、短路电流的计算等,都给继电保护的结果计算产生很大的影响。这需要我把学到的专业知识融会贯穿起来,同时,又要考虑到实际可能的运行方式相结合起来进行计算设计。由于水平有限,本设计中难免还存在不足的地方,敬请各位老师给予指导并请批评指正。参考文献1 能源部西北电力设计院编.电力工程电气设计手册(1).北京:水利电力出版社,19902 周文俊主编. 电气设备使用手册(上、下册).北京:水利电力出版社,20013 范锡普主编. 发电厂电气部分.北京:中国电力出版社,2001 4 何仰赞,温增银. 电力系统分析.华中科技出版社,2002 5 戈东方. 电力工程电气设备手册.北京:中国电力出版社,1989.26 于永源,杨绮雯. 电力系统分析.长沙电力学院: 中国电力出版社,1996.117 丁毓山. 变电所设计. 沈阳: 辽宁科学技术出版社 , 1993.68 谷水清等编. 电力系统继电保护. 北京: 中国电力出版社, 2005 9 许正亚主编. 电力系统自动装置. 南京电力专科学校: 中国电力出版社, 1990.410 西北电力设计院编. 发电厂变电所电气接线和布置.北京: 水利电力出版社,1984 毕业设计作品
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!