巨磁电阻效应及其应用实验报告

上传人:shug****ng1 文档编号:182326996 上传时间:2023-01-22 格式:DOCX 页数:6 大小:95.54KB
返回 下载 相关 举报
巨磁电阻效应及其应用实验报告_第1页
第1页 / 共6页
巨磁电阻效应及其应用实验报告_第2页
第2页 / 共6页
巨磁电阻效应及其应用实验报告_第3页
第3页 / 共6页
点击查看更多>>
资源描述
巨磁电阻效应及其应用【实验目的】1、了解GMR效应的原理2、测量GMR模拟传感器的磁电转换特性曲线3、测量GMR的磁阻特性曲线4、用GMR传感器测量电流5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理【实验原理】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率AR/R达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。有两类与自旋相关的散射对巨磁电阻效应有贡献。其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行反平行,或反平行平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR。【实验仪器】主要包括:巨磁电阻实验仪、基本特性组件、电流测量组件、角位移测量组件、磁读写组件。基本特性组件由GMR模拟传感器,螺线管线圈及比较电路,输入输出插孔组成。用以对GMR的磁电转换特性,磁阻特性进行测量。GMR传感器置于螺线管的中央。螺线管用于在实验过程中产生大小可计算的磁场,由理论分析可知,无限长直螺线管内部轴线上任一点的磁感应强度为:B=uOnl(1)式中n为线圈密度,I为流经线圈的电流强度,卩0=4XX10-7H/m为真空中的磁导率。采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000高斯)。【实验内容及实验结果处理】一、GMR模拟传感器的磁电转换特性测量在将GMR构成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构。a几何结构b电路连接GMR模拟传感器结构图对于电桥结构,如果4个GMR电阻对磁场的影响完全同步,就不会有信号输出。图17-9中,将处在电桥对角位置的两个电阻R3,R4覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而R1,R2阻值随外磁场改变。设无外磁场时4个GMR电阻的阻值均为R,R1、R2在外磁场作用下电阻减小AR,OUT简单分析表明,输出电压:U=UIN(2R-人R)屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R1、R2电阻所在的空间,进一步提高了R1,R2的磁灵敏度。从几何结构还可见,巨磁电阻模拟传感器磁电转换特性实验原理图将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。实验仪的4V电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件“模拟信号输出”接至实验仪电压表。按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流i,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。电流至-100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出的极性。从下到上记录数据于表一“增大磁场”列中。理论上讲,外磁场为零时,GMR传感器的输出应为零,但由于半导体工艺的限制,4个桥臂电阻值不一定完全相同,导致外磁场为零时输出不一定为零,在有的传感器中可以观察到这一现象。根据螺线管上表明的线圈密度,由公式(1)计算出螺线管内的磁感应强度B。以磁感应强度B作横坐标,电压表的读数为纵坐标作出磁电转换特性曲线。不同外磁场强度时输出电压的变化反映了GMR传感器的磁电转换特性,同一外磁场强度下输出电压的差值反映了材料的磁滞特性。表1GMR模拟传感器磁电转换特性的测量(电桥电压4V,线圈密度为24000匝/米)磁感应强度/高斯输出电压/mV励磁电流/mA磁感应强度/高斯减小磁场增大磁场100228228902282288022722770227226602262245022221540196180301471322096811050405312101210-52030-103950-208093-30129144-40179194-50215222-60224226-70226227-80227227-90228228-100228228二、GMR磁阻特性测量磁阻特性测量原理图为加深对巨磁电阻效应的理解,我们对构成GMR模拟传感器的磁阻进行测量。将基本特性组件的功能切换按钮切换为“巨磁阻测量”,此时被磁屏蔽的两个电桥电阻R3、R4被短路,而R1、R2并联。将电流表串连进电路中,测量不同磁场时回路中电流的大小,就可以计算磁阻。实验装置:巨磁阻实验仪,基本特性组件。将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“巨磁阻测量”。实验仪的4伏电压源串连电流表后,接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”。按表2数据,调节励磁电流,逐渐减小磁场强度,记录相应的磁阻电流于表格“减小磁场”列中。由于恒源流本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。电流至一100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出接线的极性。从下到上记录数据于“增大磁场”列中。根据螺线管上表明的线圈密度,由公式(1)计算出螺线管内的磁感应强度B。由欧姆定律R=U/I计算磁阻。以磁感应强度B作横坐标,磁阻为纵坐标做出磁阻特性曲线。应该注意,由于模拟传感器的两个磁阻是位于磁通聚集器中,与图3相比,我们作出的磁阻曲线斜率大了约10倍,磁通聚集器结构使磁阻灵敏度大大提高。不同外磁场强度时磁阻的变化反映了GMR的磁阻特性,同一外磁场强度的差值反映了材料的磁滞特性。表2GMR磁阻特性的测量(磁阻两端电压4V)磁感应强度/高斯磁阻/Q减小磁场增大磁场励磁电流/mA磁感应强度/高斯磁阻电流/mA磁阻/Q磁阻电流/mA磁阻/Q10090807060504030201050-5-10-20-30-40-50-60-70-80-90-100三、GRM开关(数字)传感器的磁电转换特性曲线测量表3GRM开关传感器的磁电转换特性测量高电平=1V低电平=0V减小磁场增大磁场开关动作励磁电流/mA磁感应强度/咼斯开关动作励磁电流/mA磁感应强度/咼斯关关四、用GMR模拟传感器测量电流GMR模拟传感器在一定的范围内输出电压与磁场强度成线性关系,且灵敏度高,线性范围大,可以方便的将GMR制成磁场计,测量磁场强度或其它与磁场相关的物理量。作为应用示例,我们用它来测量电流。由理论分析可知,通有电流I的无限长直导线,与导线距离为r的一点的磁感应强度为:B=u0I/2nr=2IX10-7/r(3)磁场强度与电流成正比,在r已知的条件下,测得B,就可知I。在实际应用中,为了使GMR模拟传感器工作在线性区,提高测量精度,还常常预先给传感器施加一固定已知磁场,称为磁偏置,其原理类似于电子电路中的直流偏置。厂导线RAGIR接线拄接绕柱可训电爲懣模拟传感器测量电流实验原理图实验装置:巨磁阻实验仪,电流测量组件实验仪的4伏电压源接至电流测量组件“巨磁电阻供电”,恒流源接至“待测电流输入”,电流测量组件“信号输出”接至实验仪电压表。将待测电流调节至0。将偏置磁铁转到远离GMR传感器,调节磁铁与传感器的距离,使输出约25mV。将电流增大到300mA,按表4数据逐渐减小待测电流,从左到右记录相应的输出电压于表格“减小电流”行中。由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时电流方向为负,记录相应的输出电压。逐渐减小负向待测电流,从右到左记录相应的输出电压于表格“增加电流”行中。当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时电流方向为正,记录相应的输出电压。将待测电流调节至0。将偏置磁铁转到接近GMR传感器,调节磁铁与传感器的距离,使输出约150mV。用低磁偏置时同样的实验方法,测量适当磁偏置时待测电流与输出电压的关系。表4用GMR模拟传感器测量电流待测电流/mA3002001000-100-200-300输出电压/mV低磁偏置(约25mV)减小电流2723增加电流23适当磁偏置(约150mV)减小电流增加电流五、GMR梯度传感器的特性及应用将GMR电桥两对对角电阻分别置于集成电路两端,4个电阻都不加磁屏蔽,即构成梯度传感器。这种传感器若置于均匀磁场中,由于4个桥臂电阻阻值变化相同,电桥输出为零。如果磁场存在一定的梯度,各GMR电阻感受到的磁场不同,磁阻变化不一样,就会有信号输出。图18以检测齿轮的角位移为例,说明其应用原理。将永磁体放置于传感器上方,若齿轮是铁磁材料,永磁体产生的空间磁场在相对于齿牙不同位置时,产生不同的梯度磁场。a位置时,输出为零。b位置时,R、R感受到的磁场强度大于R、R,输出正电压。1234c位置时,输出回归零。d位置时,R、R感受到的磁场强度小于R、R,输出负电压。于是,在齿轮转动过1234程中,每转过一个齿牙便产生一个完整的波形输出。这一原理已普遍应用于转速(速度)与位移监控,在汽车及其它工业领域得到广泛应用。abcd供电”始角动48实验装置:巨磁阻实验仪、角位移测量组件。将实验仪4V电压源接角位移测量组件“巨磁电阻角位移测量组件“信号输出”接实验仪电压表。逆时针慢慢转动齿轮,当输出电压为零时记录起度,以后每转3度记录一次角度与电压表的读数。转度齿轮转过2齿,输出电压变化2个周期。表4齿轮角位移的测量图18用GMR梯度传感器检测齿轮位移转动角度/度394245485154576063输出电压/mV0-11-44转动角度/度666972757881848790输出电压/mV6以齿轮实际转过的度数为横坐标,电压表的读数为纵向坐标作图。六、磁记录与读出二进制数字10010011磁卡区域号12345678读出电平(V)此实验演示了磁记录与磁读出的原理与过程。注意事项】1、由于巨磁阻传感器具有磁滞现象,因此,在实验中,恒流源只能单向调节,不可回调,否则测量数据将不准确。2、测试卡组件不能长期处于“写”状态。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!