资源描述
专题二函数与导数第3讲导数及其应用真题试做1(2012辽宁高考,文8)函数yx2ln x的单调递减区间为()A(1,1 B(0,1C1,) D(0,)2(2012辽宁高考,文12)已知P,Q为抛物线x22y上两点,点P,Q的横坐标分别为4,2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为()A1 B3 C4 D83(2012广东高考,文21)设0a1,集合AxR|x0,BxR|2x23(1a)x6a0,DAB.(1)求集合D(用区间表示);(2)求函数f(x)2x33(1a)x26ax在D内的极值点4(2012天津高考,文20)已知函数f(x)x3x2axa,xR,其中a0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(2,0)内恰有两个零点,求a的取值范围;(3)当a1时,设函数f(x)在区间t,t3上的最大值为M(t),最小值为m(t),记g(t)M(t)m(t),求函数g(t)在区间3,1上的最小值考向分析文科用从近三年高考来看,该部分高考命题有以下特点:从内容上看,考查导数主要有三个层次:(1)导数的概念、求导公式与法则、导数的几何意义;(2)导数的简单应用,包括求函数极值、求函数的单调区间、证明函数的单调性等;(3)导数的综合考查,包括导数的应用题以及导数与函数、不等式等的综合题从形式上看,考查导数的试题有选择题、填空题、解答题,有时三种题型会同时出现热点例析热点一导数的几何意义【例1】设函数f(x)ax(a,bZ),曲线yf(x)在点(2,f(2)处的切线方程为y3.(1)求yf(x)的解析式;(2)证明曲线yf(x)上任一点处的切线与直线x1和直线yx所围三角形的面积为定值,并求出此定值规律方法 1.导数的几何意义:函数yf(x)在x0处的导数f(x0)的几何意义是:曲线yf(x)在点(x0,f(x0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数)2求曲线切线方程的步骤:(1)求出函数yf(x)在点xx0的导数f(x0),即曲线yf(x)在点P(x0,f(x0)处切线的斜率;(2)已知或求得切点坐标P(x0,f(x0),由点斜式得切线方程为yy0f(x0)(xx0)特别提醒:当曲线yf(x)在点P(x0,f(x0)处的切线平行于y轴(此时导数不存在)时,由切线定义可知,切线方程为xx0;当切点坐标未知时,应首先设出切点坐标,再求解变式训练1 (1)设曲线yax2在点(1,a)处的切线与直线2xy60平行,则a_;(2)设f(x)xln x1,若f(x0)2,则f(x)在点(x0,y0)处的切线方程为_热点二利用导数研究函数的单调性【例2】已知函数f(x)x2aln x.(1)当a2时,求函数f(x)的单调递减区间;(2)若函数g(x)f(x)在1,)上单调,求实数a的取值范围规律方法 利用导数研究函数单调性的一般步骤:(1)确定函数的定义域;(2)求导函数f(x);(3)若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f(x)0或f(x)0.若已知函数的单调性求参数,只需转化为不等式f(x)0或f(x)0在单调区间内恒成立问题求解解题过程中要注意分类讨论;函数单调性问题以及一些相关的逆向问题,都离不开分类讨论思想变式训练2 已知函数f(x)xa(2ln x),a0.讨论f(x)的单调性热点三利用导数研究函数极值和最值问题【例3】已知函数f(x)x3ax23x,(1)若f(x)在区间1,)上是增函数,求实数a的取值范围;(2)若x是f(x)的极值点,求f(x)在1,a上的最大值;(3)在(2)的条件下,是否存在实数b,使得函数g(x)bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出实数b的取值范围;若不存在,试说明理由规律方法 利用导数研究函数极值的一般步骤是:(1)确定函数的定义域;(2)求函数f(x)的导数f(x);(3)若求极值,则先求出方程f(x)0的根,再检验f(x)在方程根左右边f(x)的符号,求出极值当根中有参数时要注意分类讨论根是否在定义域内若已知极值大小或存在情况,则转化为已知方程f(x)0根的大小或存在情况,从而求解变式训练3 设aR,函数f(x)ax33x2.(1)若x2是函数yf(x)的极值点,求a的值;(2)若函数g(x)f(x)f(x),x0,2在x0处取得最大值,求a的取值范围思想渗透转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题转化与化归常用的方法是等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的【典型例题】已知函数f(x)x(ln xm),g(x)x3x.(1)当m2时,求f(x)的单调区间;(2)若m时,不等式g(x)f(x)恒成立,求实数a的取值范围解:(1)当m2时,f(x)x(ln x2)xln x2x,定义域为(0,),且f(x)ln x1.由f(x)0,得ln x10,所以xe.由f(x)0,得ln x10,所以0xe.故f(x)的单调递增区间是(e,),递减区间是(0,e)(2)当m时,不等式g(x)f(x),即x3xx恒成立由于x0,所以x21ln x,即x2ln x,所以a .令h(x) ,则h(x),由h(x)0得x1.且当0x1时,h(x)0;当x1时,h(x)0,即h(x)在(0,1)上单调递增,在(1,)上单调递减,所以h(x)在x1处取得极大值h(1),也就是函数h(x)在定义域上的最大值因此要使a恒成立,需有a,此即为a的取值范围1.已知函数f(x)的导函数为f(x),且满足f(x)3xf(1)x2,则f(1)()A1 B2 C1 D22曲线y在点M处的切线的斜率为()A B. C D.3(2012广东深圳高级中学月考,文9)已知f(x)ln x(x0),f(x)的导数是f(x),若af(7),bf,cf,则a,b,c的大小关系是()Acba BabcCbca Dbac4函数f(x)的定义域为R,f(1)2,对任意xR,f(x)2,则f(x)2x4的解集为()A(1,1) B(1,)C(,1) D(,)5三次函数f(x),当x1时有极大值4;当x3时有极小值0,且函数图象过原点,则f(x)_.6已知函数f(x)x33x29xa(a为常数)在区间2,2上有最大值20,那么此函数在区间2,2上的最小值为_7(2012广东华南师大附中月考,文20)已知二次函数f(x)x2x,若不等式f(x)f(x)2|x|的解集为C.(1)求集合C;(2)若方程f(ax)ax15(a0,a1)在C上有解,求实数a的取值范围;(3)记f(x)在C上的值域为A,若g(x)x33tx,x0,1的值域为B,且AB,求实数t的取值范围参考答案命题调研明晰考向真题试做1B解析:对函数yx2ln x求导,得yx(x0),令解得x(0,1因此函数yx2ln x的单调递减区间为(0,1故选B.2C解析:如图所示,由已知可设P(4,y1),Q(2,y2),点P,Q在抛物线x22y上,P(4,8),Q(2,2),又抛物线可化为yx2,yx,过点P的切线斜率为y4,过点P的切线为y84(x4),即y4x8.又过点Q的切线斜率为y2,过点Q的切线为y22(x2),即y2x2.联立解得x1,y4,点A的纵坐标为4.3解:(1)令g(x)2x23(1a)x6a,9(1a)248a9a230a93(3a1)(a3)当0a时,0,方程g(x)0的两个根分别为x1,x2,所以g(x)0的解集为.因为x1,x20,所以DAB.当a1时,0,则g(x)0恒成立,所以DAB(0,),综上所述,当0a时,D;当a1时,D(0,)(2)f(x)6x26(1a)x6a6(xa)(x1),令f(x)0,得xa或x1.当0a时,由(1)知D(0,x1)(x2,),因为g(a)2a23(1a)a6aa(3a)0,g(1)23(1a)6a3a10,所以0ax11x2,所以f(x),f(x)随x的变化情况如下表:x(0,a)a(a,x1)(x2,)f(x)0f(x)极大值所以f(x)的极大值点为xa,没有极小值点当a1时,由(1)知D(0,),所以f(x),f(x)随x的变化情况如下表:x(0,a)a(a,1)1(1,)f(x)00f(x)极大值极小值所以f(x)的极大值点为xa,极小值点为x1.综上所述,当0a时,f(x)在D内有一个极大值点xa,没有极小值点;当a1时,f(x)在D内有一个极大值点xa,一个极小值点x1.4解:(1)f(x)x2(1a)xa(x1)(xa)由f(x)0,得x11,x2a0.当x变化时,f(x),f(x)的变化情况如下表:x(,1)1(1,a)a(a,)f(x)00f(x)极大值极小值故函数f(x)的单调递增区间是(,1),(a,);单调递减区间是(1,a)(2)由(1)知f(x)在区间(2,1)内单调递增,在区间(1,0)内单调递减,从而函数f(x)在区间(2,0)内恰有两个零点当且仅当解得0a.所以,a的取值范围是.(3)a1时,f(x)x3x1.由(1)知f(x)在3,1上单调递增,在1,1上单调递减,在1,2上单调递增当t3,2时,t30,1,1t,t3,f(x)在t,1上单调递增,在1,t3上单调递减因此,f(x)在t,t3上的最大值M(t)f(1),而最小值m(t)为f(t)与f(t3)中的较小者由f(t3)f(t)3(t1)(t2)知,当t3,2时,f(t)f(t3),故m(t)f(t),所以g(t)f(1)f(t)而f(t)在3,2上单调递增,因此f(t)f(2),所以g(t)在3,2上的最小值为g(2).当t2,1时,t31,2,且1,1t,t3下面比较f(1),f(1),f(t),f(t3)的大小由f(x)在2,1,1,2上单调递增,有f(2)f(t)f(1),f(1)f(t3)f(2)又由f(1)f(2),f(1)f(2),从而M(t)f(1),m(t)f(1).所以g(t)M(t)m(t).综上,函数g(t)在区间3,1上的最小值为.精要例析聚焦热点热点例析【例1】 (1)解:f(x)a,于是解得或由a,bZ,故f(x)x.(2)证明:在曲线上任取一点.由f(x0)1知,过此点的切线方程为y(xx0)令x1得y,切线与直线x1的交点为.令yx,得y2x01,切线与直线yx的交点为(2x01,2x01)直线x1与直线yx的交点为(1,1)从而所围三角形的面积为2.所围三角形的面积为定值2.【变式训练1】 (1)1解析:yax2,y2ax,y|x12a.又yax2在点(1,a)处的切线与直线2xy60平行,2a2,a1.文科用(2)2xye10解析:因为f(x)xln x1,所以f(x)ln xxln x1.因为f(x0)2,所以ln x012,解得x0e,y0e1.由点斜式得,f(x)在点(e,e1)处的切线方程为y(e1)2(xe),即2xye10.【例2】 解:(1)由题意知,函数的定义域为(0,),当a2时,f(x)2x,故f(x)的单调递减区间是(0,1)(2)由题意得g(x)2x,函数g(x)在1,)上是单调函数若g(x)为1,)上的单调增函数,则g(x)0在1,)上恒成立,即a2x2在1,)上恒成立,设(x)2x2,(x)在1,)上单调递减,(x)max(1)0,a0.若g(x)为1,)上的单调减函数,则g(x)0在1,)上恒成立,不可能实数a的取值范围为a0.【变式训练2】 解:f(x)的定义域是(0,),f(x)1.设g(x)x2ax2,二次方程g(x)0的判别式a28.当0即0a2时,对一切x0都有f(x)0.此时f(x)是(0,)上的单调递增函数当0即a2时,仅对x有f(x)0,对其余的x0都有f(x)0.此时f(x)也是(0,)上的单调递增函数当0即a2时,方程g(x)0有两个不同的实根x1,x2,0x1x2.x(0,x1)x1(x1,x2)x2(x2,)f(x)00f(x)单调递增极大值单调递减极小值单调递增此时f(x)在上单调递增,在上单调递减,在上单调递增【例3】 解:(1)f(x)3x22ax3.f(x)在1,)上是增函数,f(x)在1,)上恒有f(x)0,即3x22ax30在1,)上恒成立,则必有1且f(1)2a0.a0.(2)依题意,f0,即a30.a4,f(x)x34x23x.令f(x)3x28x30,得x1,x23.则当x变化时,f(x)与f(x)变化情况如下表:x1(1,3)3(3,4)4f(x)0f(x)61812f(x)在1,4上的最大值是f(1)6.(3)函数g(x)bx的图象与函数f(x)的图象恰有3个交点,即方程x34x23xbx恰有3个不等实根x34x23xbx0,x0是其中一个根,方程x24x3b0有两个非零不等实根b7且b3.存在满足条件的b值,b的取值范围是b7且b3.【变式训练3】 解:(1)f(x)3ax26x3x(ax2)因为x2是函数yf(x)的极值点,所以f(2)0,即6(2a2)0,因此a1.经验证,当a1时,x2是函数yf(x)的极值点(2)由题设,g(x)ax33x23ax26xax2(x3)3x(x2)当g(x)在区间0,2上的最大值为g(0)时,g(0)g(2),即020a24,得a.反之,当a时,对任意x0,2,g(x)x2(x3)3x(x2)(2x2x10)(2x5)(x2)0,而g(0)0,故g(x)在区间0,2上的最大值为g(0)综上,a的取值范围为.创新模拟预测演练文科用1.A解析:f(x)3f(1)2x,令x1,得f(1)3f(1)2,f(1)1.故选A.2B解析:对y求导得y,当x时,y|x.3B解析:f(x),f2,f3,即b2,c3.又af(7)ln 7,e7e2,f(7)ln 72.综上,abc,故选B.4B解析:设h(x)f(x)(2x4),则h(x)f(x)20,故h(x)在R上单调递增,又h(1)f(1)20,所以当x1时,h(x)0,即f(x)2x4.5x36x29x解析:设f(x)ax3bx2cxd(a0),则f(x)3ax22bxc.由题意,有即解得故f(x)x36x29x.67解析:f(x)3x26x90,得x1或x3(舍去)f(2)2a,f(1)5a,f(2)a22,a2220,a2.故最小值为f(1)7.7解:(1)f(x)f(x)2x2,当x0时,2x22x0x1;当x0时,2x22x1x0.集合C1,1(2)f(ax)ax150(ax)2(a1)ax50,令axu,则方程为h(u)u2(a1)u50,且h(0)5.当a1时,u,h(u)0在上有解,则a5.当0a1时,u,h(u)0在上有解,则0a.当0a或a5时,方程在C上有解,且有唯一解(3)A,g(x)3x23t.当t0时,g(x)0,函数g(x)x33tx在x0,1单调递增,函数g(x)的值域B.AB,解得即t.当t1,g(x)0,函数g(x)在区间0,1单调递减,B.AB,又t1,所以t4.当0t1时,令g(x)0得x(舍去负值),当x,1时,g(x)0,当x0,时,g(x)0.函数g(x)在,1单调递增,在0,单调递减,g(x)在x取到最小值要使AB,则无解综上所述:t的取值范围是4,)
展开阅读全文