第四版06章 酶

上传人:daj****de2 文档编号:143030947 上传时间:2022-08-25 格式:DOCX 页数:7 大小:31.58KB
返回 下载 相关 举报
第四版06章 酶_第1页
第1页 / 共7页
第四版06章 酶_第2页
第2页 / 共7页
第四版06章 酶_第3页
第3页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
6酶1. 作为生物催化剂,酶最重要的特点是什么?解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。2. 酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分 别属于哪一大类酶: 磷酸葡糖异构酶(phosphoglucose isomerase) 碱性磷酸酶(alkaline phosphatase) 肌酸激酶(creatine kinase) 甘油醛一3一 磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase) 琥珀酰一CoA 合成酶(succinyl-CoA synthetase) 柠檬酸合酶(citrate synthase) 葡萄糖氧化酶(glucose oxidase) 谷丙转氨酶(glutamic-pyruvic transaminase) 蔗糖酶(invertase) T4 RNA 连接酶(T4 RNA ligase)解答:前两个问题参考本章第3节内容。 异构酶类; 水解酶类; 转移酶类; 氧化还原酶类中的脱氢酶; 合成酶类; 裂合酶类; 氧化还原酶类中的氧化酶; 转移酶类; 水解酶类; 合成酶类(又称连接酶类)。3. 什么是诱导契合学说,该学说如何解释酶的专一性?解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔 性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化, 酶与底物在此基础上互补契合进行反应。根据诱导契合学说,经过诱导之后,酶与底物在结 构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些 形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。4. 阐述酶活性部位的概念、组成与特点。解答:参考本章第5节内容。5. 经过多年的探索,你终于从一噬热菌中纯化得到一种蛋白水解酶,可用作洗衣粉的 添加剂。接下来,你用定点诱变的方法研究了组成该酶的某些氨基酸残基对酶活性的影响作 用:(1)你将第65位的精氨酸突变为谷氨酸,发现该酶的底物专一性发生了较大的改变, 试解释原因;(2)你将第108位的丝氨酸突变为丙氨酸,发现酶活力完全失去,试解释原因;(3)你认为第65位的精氨酸与第108位的丝氨酸在酶的空间结构中是否相互靠近,为 什么?解答:(1)第65位的氨基酸残基可能位于酶活性部位中的底物结合部位,对酶的专一 性有较大影响,当该氨基酸残基由精氨酸突变为谷氨酸后,其带电性质发生了改变,不再具 有与原底物之间的互补性,导致酶的专一性发生改变。(2)第108位的丝氨酸残基应位于酶活性部位的催化部位,是决定酶是否有活力的关 键氨基酸,通常它通过侧链上的羟基起到共价催化的功能,当该残基突变为丙氨酸后,侧链 羟基被氢取代,不能再起原有的共价催化作用,因此酶活力完全失去。(3)第65位的精氨酸与第108位的丝氨酸在酶的空间结构中应相互靠近,因为这两个 氨基酸残基都位于酶的活性部位,根据酶活性部位的特点,参与组成酶活性部位的氨基酸残 基在酶的空间结构中是相互靠近的。6. 酶具有高催化效率的分子机理是什么?解答:酶具有高催化效率的分子机理是:酶分子的活性部位结合底物形成酶一底物复合 物,在酶的帮助作用下(包括共价作用与非共价作用),底物进入特定的过渡态,由于形成 此过渡态所需要的活化能远小于非酶促反应所需要的活化能,因而反应能够顺利进行,形成 产物并释放出游离的酶,使其能够参与其余底物的反应。7. 利用底物形变和诱导契合的原理,解释酶催化底物反应时,酶与底物的相互作用。解答:当酶与底物互相接近时,在底物的诱导作用下,酶的构象发生有利于底物结合的 变化,与此同时,酶中某些基团或离子可以使底物分子中围绕其敏感键发生形变。酶与底物 同时发生变化的结果是酶与底物形成一个互相契合的复合物,并进一步转换成过渡态形式, 在过渡态形式中,酶活性部位的构象与底物过渡态构象十分吻合,从而降低活化能,增加底 物的反应速率。8. 简述酶促反应酸碱催化与共价催化的分子机理。解答:在酶促反应酸碱催化中,酶活性部位的一些功能基团可以作为广义酸给出质子(例 如谷氨酸残基不带电荷的侧链羧基、赖氨酸残基带正电荷的侧链氨基等),底物结合质子, 形成特定的过渡态,由于形成该过渡态所需活化能相比于非酶促反应更低,因此反应速率加 快;另外一些功能基团可以作为广义碱从底物接受质子(例如谷氨酸残基带负电荷的侧链羧 基、赖氨酸残基不带电荷的侧链氨基等),底物失去质子后,形成过渡态所需的活化能比非 酶促反应低,因此反应速率加快。在酶促反应共价催化中,酶活性部位的一些功能基团作为亲核试剂作用于底物的缺电子 中心,或者作为亲电试剂作用于底物的负电中心,导致酶一底物共价复合物的形成,该共价 复合物随后被第二种底物(在水解反应中通常是水分子)攻击,形成产物与游离酶。由于该 共价复合物形成与分解的反应所需活化能均比非酶促反应低,因此反应速率被加快。9. 解释中间络合物学说和稳态理论,并推导修正后的米氏方程。解答:参考本章第6节内容。10. 乙醇脱氢酶催化如下反应:乙醇+ NAD +匚 乙醛+ NADH + H +(1) 已知反应体系中NADH在340nm有吸收峰,其他物质在该波长处的吸光度均接近 于零,请设计一种测定酶活力的方法。(2) 如何确定在实验中测得的酶促反应速率是真正的初速率?(3) 在实验中使用了一种抑制剂,下表中是在分别存在与不存在抑制剂I的情况下测定的对应不同底物浓度的酶促反应速率,请利用表中的数据计算其各自对应的Km与Vmax值, 并判断抑制剂的类型。S/(mmol/v/ (mol-L-1-min-1)L)I = 0I = 10 mmol/L205.2633.999155.0013.636104.7623.22254.2642.1152.53.3331.3161.62.770.926解答:(1)选择合适的底物浓度(NAD+与乙醇)与缓冲体系,取一定体积的底物溶液 (如1ml )加入石英比色杯,加入适量酶,迅速混合后,放入紫外/可见光分光光度计的样 品室内,测定反应体系在340 nm吸光度随时间的变化曲线。利用NADH的摩尔吸光系数(可 从相关文献查到,或用已知浓度的NADH溶液自行测定),计算出单位时间内NADH的增 加量,用于表示酶活力。(2) 如果在选取的测量时间范围内,反应体系在340 nm吸光度随时间的变化曲线接近 一条直线的形状,则表明反应速率在此时间段内保持不变,可用来代表反应初速率。(3) 用Lineweaver-Burk双倒数作图法,结果如下:5K与V 值 抑制剂浓度mmaxI = 0I = 10 mmol/LKm/(mmol-L-1)1.6438.244Vmax/( mol-L-1- min-1)5.645.64抑制剂的类型:竞争性可逆抑制剂。11. 对于一个符合米氏方程的酶,当S=3J, I=2Kj时(I为非竞争性抑制剂),则U /Vmax的数值是多少(此处Vmax指I=0时对应的最大反应速率)?解答:利用非竞争性抑制剂的动力学方程计算:U=a S + a K m其中 a = 1+I/K. = 3,则0U=Lx3K m= J3 x (3 K + K )12所以,U %获=0.25。12. 试通过一种反竞争性抑制剂的动力学分析解释其抑制常数KI在数值上是否可能等 于该抑制剂的IC50 (IC50即酶的活力被抑制一半时的抑制剂浓度,假设酶浓度与底物浓度 均固定不变)。解答:令为不存在抑制剂时的酶促反应速率,七是存在反竞争性抑制剂时的反应速率, 则当I=IC50时,酶活力被抑制一半,v.=v0/2o由于v max S u =0S + KmVmax & a S + K mIKI因此max =Vmax S2S + 2 K a S + KmmKm = (a-2)S如果KI在数值上等于IC50,则a = 2, a-2 = 0, Km= 0,而实际上,Km并不为零。因此K】在数值上不可能等于IC50o13. 在生物体内存在很多通过改变酶的结构从而调节其活性的方法,请列举这些方法并分别举例说明。解答:(1)别构调控:寡聚酶分子与底物或非底物效应物可逆地非共价结合后发生构象 的改变,进而改变酶活性状态,从而使酶活性受到调节。例如天冬氨酸转氨甲酰酶的部分催 化肽链结合底物后,使酶的整体构象发生改变,提高了其他催化肽链与底物的亲和性,CTP 可以与该酶的调节肽链结合,导致酶构象发生改变,降低了催化肽链与底物的亲和性,使酶 活力降低,起别构抑制剂的作用。(2) 酶原的激活:在蛋白水解酶的专一作用下,没有活性的酶原通过其一级结构的改 变,导致其构象发生改变,形成酶的活性部位,变成有活性的酶,这是一种使酶获得活性的 不可逆调节方法。例如在小肠内,无催化活性的胰凝乳蛋白酶原在胰蛋白酶的作用下,特定 肽键被断裂,由一条完整的肽链被水解为三段肽链,并发生构象的改变,形成活性部位,产 生蛋白水解酶活性。(3) 可逆的共价修饰:由其他的酶(如激酶、磷酸酶等)催化共价调节酶进行共价修 饰或去除修饰基团,使其结构发生改变,从而在活性形式和非活性形式之间相互转变,以调 节酶的活性。例如糖原磷酸化酶可以两种形式存在,一种是Ser14被磷酸化的、高活力的糖 原磷酸化酶。,一种是非磷酸化的、低活力的糖原磷酸化酶,在磷酸化酶激酶的催化作用 下,糖原磷酸化酶b的Ser14被磷酸化,形成高活力的糖原磷酸化酶。;在磷酸化酶磷酸酶 的催化作用下,糖原磷酸化酶a的Ser14-PO32-被脱磷酸化,形成低活力的糖原磷酸化酶b。(4) 对寡聚酶活性的调节可以通过改变其四级结构来进行,这种作用既包括使无活性 的寡聚体解离,使部分亚基获得催化活性,也包括使无活性的单体聚合形成有催化活性的寡 聚体。前者的例子是蛋白激酶A,该酶由2个调节亚基与2个催化亚基组成,是没有酶活性 的寡聚酶,胞内信使cAMP与调节亚基结合可导致寡聚酶解离成一个调节亚基复合体和两 个催化亚基,此时自由的催化亚基可获得酶活性。后者的例子是表皮生长因子受体,其在细 胞膜上通常以无活性的单体存在,当作为信使的表皮生长因子结合到受体的胞外部分之后, 两个单体结合形成二聚体,从而使酶被激活。14. 以天冬氨酸转氨甲酰酶为例解释蛋白质功能的别构调控。解答:天冬氨酸转氨甲酰酶(ATCase)的调控属于酶的别构调控。ATCase是寡聚酶, 由多个催化亚基和调节亚基构成。催化亚基可结合底物,具有催化作用,调节亚基可结合非 底物分子效应物。ATCase以及该酶的每个亚基、每个活性部位具有两种构象状态,一种与 底物有高亲和力(T态),一种与底物有低亲和力(R态)。当位于ATCase催化亚基的某个活性部位结合底物分子后,其构象发生改变,构象改变 的信息通过各亚基内和亚基之间的相互作用传递到其他活性部位,使其构象改变,增加了它 与其他底物分子的亲和力,并最终影响了酶的总活性状态。这种别构调控使ATCase的S 对v的动力学曲线不是双曲线,而是S型曲线。当位于ATCase调节亚基的调节部位结合非底物效应物CTP 后,CTP的结合引起ATCase 构象的变化,使ATCase构象向对底物有低亲和力的T态改变,降低了 ATCase与底物的亲 和力,导致酶活性降低,CTP是别构抑制剂(负效应物)。当位于ATCase调节亚基的调节部位结合非底物效应物ATP后, ATP的结合引起ATCase 构象的变化,使ATCase构象向对底物有低亲和力的R态改变,增加了 ATCase与底物的亲 和力,导致酶活性升高,CTP是别构激活剂(正效应物)。ATP和CTP对ATCase的别构调控均具有一定的生理意义,可用于对生物的新陈代谢、 基因表达等进彳丁调节。15. 当加入较低浓度的竞争性抑制剂于别构酶的反应体系中时,往往观察到酶被激活的 现象,请解释这种现象产生的原因。解答:在有少量竞争性抑制剂存在时,抑制剂与别构酶(通常为寡聚酶)的部分活性部 位结合,引起酶构象变化,此作用等同于底物的正协同同促效应,从而使酶的整体活性提高。16 .酶原激活的机制是什么?该机制如何体现“蛋白质一级结构决定高级结构”的原理?解答:酶原激活的机制是在相应的蛋白水解酶的作用下,原本没有催化功能的酶原在特 定肽键处断裂,一级结构发生变化,从而导致其高级结构变化,形成活性部位,具备了特定 的催化功能。这种变化是一种不可逆的过程。在酶原激活的机制中,由于高级结构的改变是由于一级结构的改变造成的,因此这说明 了不同的一级结构可导致不同高级结构的产生,这是“蛋白质一级结构决定高级结构”原理 的体现。
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!