资源描述
求解圆锥曲线离心率的方法离心率是圆锥曲线的一个重要性质,在高考中频繁出现,下面例析几种常用求法。椭圆的离心率e(0,1),双曲线的离心率e1,抛物线的离心率e=1一、直接求出a、c,求解e已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式来解决。例. 已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为()A. B. C. D. 解:抛物线的准线是,即双曲线的右准线,则,解得,故选D变式练习1:若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率为( )A. B. C. D.解:由F1、F2的坐标知 2c=31,c=1,又椭圆过原点,ac=1,a+c=3,a=2,c=1,所以离心率e=.故选C.变式练习:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A. B. C. D2解析:由题设a=2,2c=6,则c=3,e=,因此选C变式练习: 点P(-3,1)在椭圆的左准线上,过点P且方向为a=(2,-5)的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为()A. B. C. D. 解:由题意知,入射光线为,关于的反射光线(对称关系)为,则解得则。故选A。二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,沟通a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。例. 已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是()A. B. C. D. 解:如图,设MF1的中点为P,则P的横坐标为。由焦半径公式,即,得,解得,故选D。变式练习:设双曲线1(0ab)的半焦距为c,直线L过(a,0),(0,b)两点.已知原点到直线的距离为c,则双曲线的离心率为( )A.2 B. C. D. 解:由已知,直线L的方程为bx+ay -ab=0.由点到直线的距离公式,得 c,又c2=a2+b2, 4ab=c2,两边平方,得16a2(c2a2)=3c4.两边同除以a4,并整理,得 3e4-16e2+16=0.解得 e24或e2.又0a2,e24,e2.故选A.变式练习:双曲线虚轴的一个端点为M,两个焦点为F1,F2,F1MF2120,则双曲线的离心率为( ) (A) (B) (C) (D)解:如图所示,不妨设M(0,b),F1(-c,0), F2(c,0),则|MF1|=|MF2|=.又|F1F2|2c,在F1MF2中, 由余弦定理,得cosF1MF2,即cos120,b2c2a2,3a22c2,e2,e.故选B.三、采用离心率的定义以及椭圆的定义求解例设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,则椭圆的离心率是_。解:如右图所示,有四、根据圆锥曲线的统一定义求解例4.设椭圆+1 (ab0)的右焦点为F1,右准线为l1,若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是.解:如图1所示,AB是过F1且垂直于x轴的弦,ADl1于D,|AD|为F1到准线l1的距离,根据椭圆的第二定义,e=, 即 e=.故填. 变式练习:五、构建关于e的不等式,求e的取值范围例5. 设,则二次曲线的离心率的取值范围为( )A. B. C. D. ()另:由x2coty2tan=1,(0,),得a2tan,b2= cot,c2a2+b2tan+cot,e21+ cot2,(0,),cot21,e22,e.故选D.例6 如图,已知梯形ABCD中,AB2CD,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点当时,求双曲线离心率e的取值范围解:以AB的垂直平分线为y轴,直线AB为x轴,建立如图3所示的直角坐标系xOy,则CDy轴.因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于y轴对称依题意,记A(c,0),C(,h),E(x0,y0),其中c=AB为双曲线的半焦距,h是梯形的高由定比分点坐标公式得 x0,y0设双曲线的方程为1,则离心率e=. 由点C、E在双曲线上,所以,将点C的坐标代入双曲线方程得 1 ,将点E的坐标代入双曲线方程得()2()21 再将e=、得 1,1 ,()2()21 将式代入式,整理得 (44)12,1由题设得,1解得e所以双曲线的离心率的取值范围为,练习:1.(天津理4) 设双曲线的离心率为且它的一条准线与抛物线的准线重合,则此双曲线的方程为A.B.C.D.2.(全国2 文11)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )ABCD3.(2006全国II)已知双曲线的一条渐近线方程为yx,则双曲线的离心率为 (A) (B) (C) (D)4(2006山东卷)在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为 (A) (B) (C) (D)5(2006山东卷)在给定双曲线中,过焦点垂直于实轴的弦长为,焦点到相应准线的距离为,则该双曲线的离心率为 (A) (B)2 (C) (D)26.(安徽理9)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为 (A)(B)(C)(D)7.(湖南文9)设分别是椭圆的左、右焦点,P是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是A B. C. D. 8.(全国2理11)设F1,F2分别是双曲线的左、右焦点。若双曲线上存在点A,使F1AF2=90,且|AF1|=3|AF2|,则双曲线离心率为(A) (B)(C) (D) 9.(2006福建卷)已知双曲线(a0,bb0),则有,据此求出e5.不妨设双曲线方程为(a0,b0),则依题意有,据此解得e,选C6.解析:如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,连接AF1,AF2F1=30,|AF1|=c,|AF2|=c, ,双曲线的离心率为,选D。7.由已知P(),所以化简得8.设F1,F2分别是双曲线的左、右焦点。若双曲线上存在点A,使F1AF2=90,且|AF1|=3|AF2|,设|AF2|=1,|AF1|=3,双曲线中, 离心率,选B。9.双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率, ,离心率e2=, e2,选C10.椭圆的焦点为,两条准线与轴的交点分别为,若,则,该椭圆离心率e, D。设点为曲线上的点一椭圆的焦半径公式:到左焦点的距离:;到右焦点的距离:二双曲线的焦半径公式:到左焦点的距离:;到右焦点的距离:
展开阅读全文