七年级下册数学典型例题归纳【谷风课堂】

上传人:8** 文档编号:129799085 上传时间:2022-08-03 格式:PPT 页数:49 大小:3.30MB
返回 下载 相关 举报
七年级下册数学典型例题归纳【谷风课堂】_第1页
第1页 / 共49页
七年级下册数学典型例题归纳【谷风课堂】_第2页
第2页 / 共49页
七年级下册数学典型例题归纳【谷风课堂】_第3页
第3页 / 共49页
点击查看更多>>
资源描述
七年级数学下册各单元知识归纳 相交线与平行线相交线与平行线 平面直角坐标系平面直角坐标系 三角形三角形 二元一次方程组二元一次方程组 不等式与不等式组不等式与不等式组1沐风教育第五章相交线与平行线第五章相交线与平行线l一,定义:一,定义:邻补角,对顶角,垂线,平行线,同位角,邻补角,对顶角,垂线,平行线,同位角,内错角,同旁内角,命题,平移,对应点内错角,同旁内角,命题,平移,对应点l二,定理与性质二,定理与性质 对顶角的性质,垂线的性质,平行公理,对顶角的性质,垂线的性质,平行公理,平行公理的推论,平行线的性质,平行线平行公理的推论,平行线的性质,平行线的判定的判定2沐风教育金典例题两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为().在同一平面内,不相交的两条直线互相().同一平面内的两条直线的位置关系只有()与()两种.设a、b、c为平面上三条不同直线,若,则a与c的位置关系是();若,则a与c的位置关系是();若,则a与c的位置关系是()。邻补角邻补角平行平行 相交相交平行平行 平行平行 平行平行 垂直垂直 3沐风教育假命题 平行线的性质:两条平行直线被第三条直线所截,同位角相等.简单说成:().两条平行直线被第三条直线所截,内错角相等.简单说成:().两条平行直线被第三条直线所截,同旁内角互补.简单说成:().判断一件事情的语句,叫做().命题由()和()两部分组成.题设是已知事项,结论是().命题常可以写成“如果那么”的形式,这时“如果”后接的部分是(),“那么”后接的部分是().如果题设成立,那么结论一定成立.像这样的命题叫做().如果题设成立时,不能保证结论一定成立,像这样的命题叫做().定理都是真命题 两直线平行同位角相等两直线平行同位角相等 结论结论 题设题设 命题命题 两直线平行同旁内角互补两直线平行同旁内角互补 两直线平行内错角相等两直线平行内错角相等 真命题真命题 结论结论题设题设由已知事项推出的事项由已知事项推出的事项 4沐风教育如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,DGAB交CA于G.求证12证明:ADBC,EFBC EFB ADB90即:EF DA 2=3 DGAB 1=3 1=25沐风教育第六章平面直角坐标系第六章平面直角坐标系知识定义知识定义:有序数对,平面直角坐标系,横轴,纵轴,有序数对,平面直角坐标系,横轴,纵轴,原点,坐标,象限原点,坐标,象限6沐风教育典型例题典型例题1,点,点A(-3,4)所在象限为()所在象限为()A、第一象限第一象限 B、第二象限第二象限 C、第三象限第三象限 D、第四象限第四象限2,点,点B(-3,0)在()在()上)上 A、在在x轴的正半轴上轴的正半轴上 B、在在x轴的负半轴上轴的负半轴上 C、在在y轴的正半轴上轴的正半轴上 D、在在y轴的负半轴上轴的负半轴上3,在平面内两条互相,在平面内两条互相 且且 的数轴,就构的数轴,就构成了平面直角坐标系。水平的数轴称为成了平面直角坐标系。水平的数轴称为 轴或轴或_ 轴,取向轴,取向 的方向为正方向;竖直的数轴的方向为正方向;竖直的数轴称为称为_ 轴,轴,又称又称 轴,轴,取向取向 的方向为正方的方向为正方向;两坐标轴的交点为平面直角坐标系的向;两坐标轴的交点为平面直角坐标系的_。原点原点B右右 x 横轴横轴 公共原点公共原点 垂直垂直 B纵纵Y Y上上7沐风教育第七章三角形第七章三角形一,知识定义:一,知识定义:三角形,三角形,三边关系,中线,高,角平分线,三三边关系,中线,高,角平分线,三角形的稳定性,多边形,多边形的内角,多边形角形的稳定性,多边形,多边形的内角,多边形的外角,多边形的对角线,正多边形,平面镶嵌的外角,多边形的对角线,正多边形,平面镶嵌 二,公式与性质:二,公式与性质:三角形的内角和,三角形的性质,多边形内角和三角形的内角和,三角形的性质,多边形内角和公式,多边形外角和,多边形对角线的条数公式,多边形外角和,多边形对角线的条数 8沐风教育例题 例三、已知a、b、c是一个三角形三条边长,则化简abcbac2b-2c解析:解析:a、b、c是三角形的三条边长abc;b-ac(三角形两边之和大于第三边)abc0;bac0abcbacabc(bac)abcbac2b2c9沐风教育C 一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A直角三角形B等腰三角形 C锐角三角形D钝角三角形 一个多边形的内角和比它的外角的和的2倍还大180,这个多边形的边数是()A.5 B.6 C.7 D.8 下面各角能成为某多边形的内角和的是()A.430B.4343 C.4320 D.4360CD10沐风教育答案1359边形 小明在进行多边形内角和计算时,求得的内角和为1125,当发现错误之后,重新检查,发现少加了一个内角,问这个内角是多少度,他求的是几边形内角和?11沐风教育证明:由题意可知:1/2 ACD=3=4 ACD=A+2 2由三角形性质1可知:4=2+E(A+2 2)=E+22即:E 12A.如图9:ACD是ABC的外角,BE平分ABC,CE平分ACD,且BE、CE交于点E.求证:E 12A.图9 4 3 2 1 E D C B A12沐风教育解:由题意可知:EAC=DAB,ABD=DBF,CAB+ABC=90 由三角形外角性质1可知:CAB=180-2 DAB ABC=180-2 DBA 180-2 DAB+180-2 DBA=90即:DAB+DBA=135 D=180-135 D=45 如图7,在ABC中,C90,外角EAB,ABF的平分线AD、BD相交于点D,求D的度数 F E C B AD图713沐风教育解:由题意可知:a+b+c=24,c+a=2b,c-a=4即:a=6,b=8,c=10答:a的长是6cm,b的长是8cm,c的长是10cm.已知ABC的周长是24cm,三边a、b、c满足c+a2b,ca4cm,求a、b、c的长.14沐风教育如图5,ABC中,BD是ABC的角平分线,DEBC,交AB于E,A60,BDC95,求BDE各内角的度数.解:在解:在ADB中,由中,由BDC95可得:可得:ADB85,ABD35 又由ED/BC,可知:ABD=EDB35 在在BDE中中,BED=110 D A E C B图515沐风教育 如图如图11,已知:,已知:ABC中,中,AD是是BC边上的中线边上的中线.试说明不等式试说明不等式AD+BD1/2(AB+AC)成立的理由)成立的理由.证明:由三角形三边关系可 知:在ABD中,中,AD+BDAB 同理在同理在ADC中,中,AD+DCAC AD+BD+AD+DCAB+AC 又由题意可知:又由题意可知:BD=DC 2(AD+DC)=AB+AC 即:即:AD+DC=1/2(AB+AC)A B D C 图1116沐风教育 如图如图10,草原上有,草原上有4口油井,位于四边形口油井,位于四边形ABCD的的4个顶点,现在要建立一个维修站个顶点,现在要建立一个维修站H,试问,试问H建在建在何处,才能使它到何处,才能使它到4口油井的距离之和口油井的距离之和AH+HB+HC+HD为最小,说明理由为最小,说明理由.答:连结答:连结AC、BD,交点,交点即为即为H,两边之和大于第三,两边之和大于第三边边 图10BDCA17沐风教育(08湖南益阳)如图湖南益阳)如图2,在,在ABC中,中,AB=BC=12cm,ABC=80,BD是是ABC的平的平分线,分线,DEBC.(1)求求EDB的度数;的度数;(2)求求DE的长的长.解:(解:(1)由题意可知:)由题意可知:EBD=DBC=40 又又DE/BC EDB=DBC=40 (2)由题意可知:由题意可知:AED和和 BED都为等腰三角形都为等腰三角形 AE=ED=BE 又又 AB=BC=12cm ED=6cmAEDCB18沐风教育如图,如果如图,如果AB/CD,B=37,D=37,那么,那么BC与与DE平行吗平行吗?为什么?为什么?证明:证明:AB/CD C=B=37 又又 D=37 BC/DE19沐风教育知识定义(重点)知识定义(重点)三角形:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。由不在同一直线上的三条线段首尾顺次相接所组成的图形。三边关系:三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三三角形任意两边的和大于第三边,任意两边的差小于第三边。边。高:高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。的线段叫做三角形的高。中线:中线:在三角形中,连接一个顶点和它的对边中点的线段。在三角形中,连接一个顶点和它的对边中点的线段。角平分线:角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。的顶点和交点之间的线段。三角形的稳定性三角形的稳定性多边形:多边形:在平面内,由一些线段首尾顺次相接组成的图形。在平面内,由一些线段首尾顺次相接组成的图形。多边形的内角:多边形的内角:多边形相邻两边组成的角。多边形相邻两边组成的角。多边形的外角:多边形的外角:多变形的一边与它的邻边的延长线组成的角。多变形的一边与它的邻边的延长线组成的角。多边形的对角线:多边形的对角线:连接多边形不相邻的两个顶点的线段。连接多边形不相邻的两个顶点的线段。正多边形:正多边形:在平面内,各个角都相等,各条边都相等的多边形。在平面内,各个角都相等,各条边都相等的多边形。平面镶嵌:平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面。做多边形覆盖平面。20沐风教育公式与性质公式与性质 三角形的内角和:三角形的内角和:三角形的内角和为三角形的内角和为180180。三角形外角的性质:三角形外角的性质:性质性质1 1:三角形的一个外角等于和它不相邻三角形的一个外角等于和它不相邻的两个内角和。的两个内角和。性质性质2 2:三角形的一个外角大于任何一个和三角形的一个外角大于任何一个和它不相邻的内角。它不相邻的内角。多边形内角和公式:多边形内角和公式:n n边形的内角和等于(边形的内角和等于(n-n-2 2)*180180.多边形的外角和:多边形的外角和:多边形的外角和为多边形的外角和为360360.多边形对角线的条数:多边形对角线的条数:n(n-3)/221沐风教育第八章二元一次方程组第八章二元一次方程组 知识定义:知识定义:二元一次方程二元一次方程 二元一次方程组二元一次方程组 二元一次方程的解二元一次方程的解 二元一次方程组的解二元一次方程组的解 消元消元 代入消元代入消元 加减消元法加减消元法22沐风教育基础练习 C B 23沐风教育C AB 24沐风教育243x432y22830m10425沐风教育 解下列方程组解下列方程组:6152423yxyxyx26沐风教育27沐风教育28沐风教育29沐风教育30沐风教育二元一次方程组应用探索二元一次方程组应用探索 二元一次方程组是最简单的方程组,其应二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型方程组来加以解决,现将常见的几种题型归纳如下:归纳如下:31沐风教育一、数字问题一、数字问题 例例1 一个两位数,比它十位上的数与个位上的数一个两位数,比它十位上的数与个位上的数的和大的和大9;如果交换十位上的数与个位上的数,;如果交换十位上的数与个位上的数,所得两位数比原两位数大所得两位数比原两位数大27,求这个两位数,求这个两位数解:设这个两位数十位上的数为解:设这个两位数十位上的数为x,个位上的,个位上的数为数为y。109101027xyxyyxxy得得14xy,因此,所求因此,所求的两位数是的两位数是14 32沐风教育例题例题1 1点评点评 点评:由于受一元一次方程先入为主的影点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为象本题,如果直接设这个两位数为x,或只,或只设十位上的数为设十位上的数为x,那将很难或根本就想象,那将很难或根本就想象不出关于不出关于x的方程一般地,与数位上的数的方程一般地,与数位上的数字有关的求数问题,一般应设各个数位上字有关的求数问题,一般应设各个数位上的数为的数为“元元”,然后列多元方程组解之,然后列多元方程组解之33沐风教育二、利润问题二、利润问题 分析:商品的利润涉及到进价、定价和卖出价,分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为因此,设此商品的定价为x元,进价为元,进价为y元,则打元,则打九折时的卖出价为九折时的卖出价为0.9x元,获利元,获利(0.9x-y)元,因此元,因此得方程得方程0.9x-y=20%y;打八折时的卖出价为;打八折时的卖出价为0.8x元,获利元,获利(0.8x-y)元,可得方程元,可得方程0.8x-y=10.解方程组解方程组 例例2一件商品如果按定价打九折出售可以盈利一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利如果打八折出售可以盈利10元,问此商品的定价是元,问此商品的定价是多少?多少?0.920%0.810 x yyx y 解得解得200150 xy,34沐风教育例题2点评:点评:商品销售盈利百分数是相对于进价点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出而言的,不要误为是相对于定价或卖出价利润的计算一般有两种方法,一是:价利润的计算一般有两种方法,一是:利润利润=卖出价卖出价-进价;二是:利润进价;二是:利润=进价进价利利润率(盈利百分数)特别注意润率(盈利百分数)特别注意“利润利润”和和“利润率利润率”是不同的两个概念是不同的两个概念35沐风教育三、配套问题三、配套问题例例3某厂共有某厂共有120名生产工人,每个工人每天可生名生产工人,每个工人每天可生产螺栓产螺栓25个或螺母个或螺母20个,如果一个螺栓与两个螺母个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成名工人生产螺母,才能使每天生产出来的产品配成最多套?最多套?分析:要使生产出来的产品配成最多套,只须生分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的天生产的螺栓与螺母应满足关系式:每天生产的螺栓数螺栓数2=每天生产的螺母数每天生产的螺母数1因此,设安因此,设安排人生产螺栓,人生产螺母,则每天可生产排人生产螺栓,人生产螺母,则每天可生产螺栓螺栓25个,螺母个,螺母20个,依题意,得个,依题意,得120502201xyxy解之,得解之,得20100 xy 故应安排故应安排20人生产螺栓,人生产螺栓,100人生产螺母人生产螺母36沐风教育例题例题3 3点评:点评:点评:产品配套是工厂生产中基本原则之一,如点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:常见的配套问题的等量关系是:(1)“二合一二合一”问题:如果件甲产品和件问题:如果件甲产品和件乙产品配成一套,那么甲产品数的倍等于乙产乙产品配成一套,那么甲产品数的倍等于乙产品数的倍,即;品数的倍,即;(2)“三合一三合一”问题:如果甲产品件,乙产问题:如果甲产品件,乙产品件,丙产品件配成一套,那么各种产品数品件,丙产品件配成一套,那么各种产品数应满足的相等关系式是:应满足的相等关系式是:ab甲产品数乙产品数abc甲 产 品 数 乙 产 品 数 丙 产 品 数37沐风教育四、行程问题四、行程问题 例例4在某条高速公路上依次排列着在某条高速公路上依次排列着A、B、C三三个加油站,个加油站,A到到B的距离为的距离为120千米,千米,B到到C的距离的距离也是也是120千米分别在千米分别在A、C两个加油站实施抢劫两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在高速公路逃离现场,正在B站待命的两辆巡逻车站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往两个加油站驶去,结果往B站驶来的团伙在站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过而另一团伙经过3小时后才被另一辆巡逻车追赶小时后才被另一辆巡逻车追赶上问巡逻车和犯罪团伙的车的速度各是多少?上问巡逻车和犯罪团伙的车的速度各是多少?38沐风教育点评:点评:“相向而遇相向而遇”和和“同向追及同向追及”是行程问题中最常见的两是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇相向而遇”时,两者所走的路程之和等于它们原来的距离;时,两者所走的路程之和等于它们原来的距离;“同向追及同向追及”时,快者所走的路程减去慢者所走的路程等于它时,快者所走的路程减去慢者所走的路程等于它们原来的距离们原来的距离39沐风教育五、货运问题五、货运问题 例例5 5 某船的载重量为某船的载重量为300300吨,容积为吨,容积为12001200立立方米,现有甲、乙两种货物要运,其中甲方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为种货物每吨体积为6 6立方米,乙种货物每吨立方米,乙种货物每吨的体积为的体积为2 2立方米,要充分利用这艘船的载立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?重和容积,甲、乙两重货物应各装多少吨?40沐风教育点评:由实际问题列出的方程组一般都可以再化简,因点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度化简时一和解法,这样可以减少计算量,增加准确度化简时一般是去分母或两边同时除以各项系数的最大公约数或移般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等项、合并同类项等41沐风教育六、工程问题六、工程问题 例例6 6 某服装厂接到生产一种工作服的订货某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装厂原来的生产能力,每天可生产这种服装服装150150套,按这样的生产进度在客户要求套,按这样的生产进度在客户要求的期限内只能完成订货的;现在工厂改进的期限内只能完成订货的;现在工厂改进了人员组织结构和生产流程,每天可生产了人员组织结构和生产流程,每天可生产这种工作服这种工作服200200套,这样不仅比规定时间少套,这样不仅比规定时间少用用1 1天,而且比订货量多生产天,而且比订货量多生产2525套,求订做套,求订做的工作服是几套?要求的期限是几天?的工作服是几套?要求的期限是几天?42沐风教育 点评:工程问题与行程问题相类似,关点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即键要抓好三个基本量的关系,即“工作工作量量=工作时间工作时间工作效率工作效率”以及它们的变以及它们的变式式“工作时间工作时间=工作量工作量工作效率,工作工作效率,工作效率效率=工作量工作量工作时间工作时间”其次注意当其次注意当题目与工作量大小、多少无关时,通常题目与工作量大小、多少无关时,通常用用“1”表示总工作量表示总工作量43沐风教育二元一次方程组实际问题二元一次方程组实际问题赏析赏析【知识链接知识链接】列二元一次方程组解应用题的一般步骤可概括为列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答审、找、列、解、答”五步,即:五步,即:(1)审:通过审题,把实际问题抽象成数学问)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的题,分析已知数和未知数,并用字母表示其中的两个未知数;两个未知数;(2)找:找出能够表示题意两个相等关系;)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数)列:根据这两个相等关系列出必需的代数式,从而列出方程组;式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判)答:在对求出的方程的解做出是否合理判断的基础上,写出答案断的基础上,写出答案.44沐风教育【典题精析典题精析】例例1(2006年南京市)某停车场的收费标准如下:年南京市)某停车场的收费标准如下:中型汽车的停车费为中型汽车的停车费为6元元/辆,小型汽车的停车费为辆,小型汽车的停车费为4元元/辆辆.现在停车场有现在停车场有50辆中、小型汽车,这些车共辆中、小型汽车,这些车共缴纳停车费缴纳停车费230元,问中、小型汽车各有多少辆?元,问中、小型汽车各有多少辆?45沐风教育46沐风教育47沐风教育【跟踪练习跟踪练习】为满足市民对优质教育的需求,某中学决定改变办为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需除旧校舍每平方米需80元,建新校舍每平方米需元,建新校舍每平方米需700元元.计划在年内拆除旧校舍与建造新校舍共计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的成了计划的80%,而拆除旧校舍则超过了计划的,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?)求:原计划拆、建面积各是多少平方米?(2)若绿化)若绿化1平方米需平方米需200元,那么在实际完成的元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方拆、建工程中节余的资金用来绿化大约是多少平方米?米?48沐风教育 答案:(答案:(1)原计划拆、建面积各是)原计划拆、建面积各是4800平平方米、方米、2400平方米;平方米;(2)可绿化面积为)可绿化面积为1488平方米平方米.49沐风教育
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!