2022年高考数学复习 圆锥曲线八种解题方法

上传人:xt****7 文档编号:105433705 上传时间:2022-06-12 格式:DOC 页数:14 大小:201.02KB
返回 下载 相关 举报
2022年高考数学复习 圆锥曲线八种解题方法_第1页
第1页 / 共14页
2022年高考数学复习 圆锥曲线八种解题方法_第2页
第2页 / 共14页
2022年高考数学复习 圆锥曲线八种解题方法_第3页
第3页 / 共14页
点击查看更多>>
资源描述
2022年高考数学复习 圆锥曲线八种解题方法总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题 (2)焦点三角形问题(3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题(5)求曲线的方程问题1曲线的形状已知-这类问题一般可用待定系数法解决。2曲线的形状未知-求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。 (2)双曲线有两种定义。第一定义中,当r1r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1)与直线相交于A、B,设弦AB中点为M(x0,y0),则有。(其中K是直线AB的斜率) (2)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有(其中K是直线AB的斜率)(3)y2=2px(p0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p. (其中K是直线AB的斜率)4、弦长公式法弦长公式:一般地,求直线与圆锥曲线相交的弦AB长的方法是:把直线方程代入圆锥曲线方程中,得到型如的方程,方程的两根设为,判别式为,则,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y”,令2x+y=b,则b表示斜率为-2的直线在y轴上的截距;如“x2+y2”,令,则d表示点P(x,y)到原点的距离;又如“”,令=k,则k表示点P(x、y)与点A(-2,3)这两点连线的斜率6、参数法(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x轴上一动点P,常设P(t,0);直线x-2y+1=0上一动点P。除设P(x1,y1)外,也可直接设P(2y1-1,y1)(2)斜率为参数 当直线过某一定点P(x0,y0)时,常设此直线为y-y0=k(x-x0),即以k为参数,再按命题要求依次列式求解等。(3)角参数当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。7、代入法中的顺序这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P1,P2求(或求证)目标Q”,方法1是将条件P1代入条件P2,方法2可将条件P2代入条件P1,方法3可将目标Q以待定的形式进行假设,代入P1,P2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。八、充分利用曲线系方程法一、定义法【典型例题】例1、(1)抛物线C:y2=4x上一点P到点A(3,4)与到准线的距离和最小,则点 P的坐标为_ (2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。分析:(1)A在抛物线外,如图,连PF,则,因而易发现,当A、P、F三点共线时,距离和最小。(2)B在抛物线内,如图,作QRl交于R,则当B、Q、R三点共线时,距离和最小。解:(1)(2,)连PF,当A、P、F三点共线时,最小,此时AF的方程为 即 y=2(x-1),代入y2=4x得P(2,2),(注:另一交点为(),它为直线AF与抛物线的另一交点,舍去)(2)()过Q作QRl交于R,当B、Q、R三点共线时,最小,此时Q点的纵坐标为1,代入y2=4x得x=,Q()点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。例2、F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。(1)的最小值为 (2)的最小值为 分析:PF为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。解:(1)4- 设另一焦点为,则(-1,0)连A,P 当P是A的延长线与椭圆的交点时, 取得最小值为4-。(2)作出右准线l,作PHl交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,当A、P、H三点共线时,其和最小,最小值为例3、动圆M与圆C1:(x+1)2+y2=36内切,与圆C2:(x-1)2+y2=4外切,求圆心M的轨迹方程。分析:作图时,要注意相切时的“图形特征”:两个圆心与切点这三点共线(如图中的A、M、C共线,B、D、M共线)。列式的主要途径是动圆的“半径等于半径”(如图中的)。解:如图, (*)点M的轨迹为椭圆,2a=8,a=4,c=1,b2=15轨迹方程为点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出,再移项,平方,相当于将椭圆标准方程推导了一遍,较繁琐!例4、ABC中,B(-5,0),C(5,0),且sinC-sinB=sinA,求点A的轨迹方程。分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R(R为外接圆半径),可转化为边长的关系。解:sinC-sinB=sinA 2RsinC-2RsinB=2RsinA即 (*)点A的轨迹为双曲线的右支(去掉顶点)2a=6,2c=10a=3, c=5, b=4所求轨迹方程为 (x3)点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)例5、定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。分析:(1)可直接利用抛物线设点,如设A(x1,x12),B(x2,X22),又设AB中点为M(x0y0)用弦长公式及中点公式得出y0关于x0的函数表达式,再用函数思想求出最短距离。(2)M到x轴的距离是一种“点线距离”,可先考虑M到准线的距离,想到用定义法。解法一:设A(x1,x12),B(x2,x22),AB中点M(x0,y0)则由得(x1-x2)21+(x1+x2)2=9即(x1+x2)2-4x1x21+(x1+x2)2=9 由、得2x1x2=(2x0)2-2y0=4x02-2y0代入得 (2x0)2-(8x02-4y0)1+(2x0)2=9, 当4x02+1=3 即 时,此时法二:如图, 即, 当AB经过焦点F时取得最小值。M到x轴的最短距离为点评:解法一是列出方程组,利用整体消元思想消x1,x2,从而形成y0关于x0的函数,这是一种“设而不求”的方法。而解法二充分利用了抛物线的定义,巧妙地将中点M到x轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A、B到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB是否能经过焦点F,而且点M的坐标也不能直接得出。二、韦达定理法【典型例题】例6、已知椭圆过其左焦点且斜率为1的直线与椭圆及准线从左到右依次交于A、B、C、D、设f(m)=,(1)求f(m),(2)求f(m)的最值。分析:此题初看很复杂,对f(m)的结构不知如何运算,因A、B来源于“不同系统”,A在准线上,B在椭圆上,同样C在椭圆上,D在准线上,可见直接求解较繁,将这些线段“投影”到x轴上,立即可得防 此时问题已明朗化,只需用韦达定理即可。解:(1)椭圆中,a2=m,b2=m-1,c2=1,左焦点F1(-1,0)则BC:y=x+1,代入椭圆方程即(m-1)x2+my2-m(m-1)=0得(m-1)x2+m(x+1)2-m2+m=0(2m-1)x2+2mx+2m-m2=0设B(x1,y1),C(x2,y2),则x1+x2=-(2)当m=5时, 当m=2时,点评:此题因最终需求,而BC斜率已知为1,故可也用“点差法”设BC中点为M(x0,y0),通过将B、C坐标代入作差,得,将y0=x0+1,k=1代入得,可见当然,解本题的关键在于对的认识,通过线段在x轴的“投影”发现是解此题的要点。三、点差法与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。若设直线与圆锥曲线的交点(弦的端点)坐标为、,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。1.以定点为中点的弦所在直线的方程例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为、为的中点 又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。例2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。若存在这样的直线,求出它的方程,若不存在,说明理由。策略:这是一道探索性习题,一般方法是假设存在这样的直线,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。解:设存在被点平分的弦,且、则,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的位置非常重要。(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。2.过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。解:设弦端点、,弦的中点,则 , 又 ,两式相减得即 ,即点的坐标为。例4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。解:设弦端点、,弦的中点,则, 又 ,两式相减得即,即 ,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为例1已知椭圆,求斜率为的平行弦中点的轨迹方程.解设弦的两个端点分别为,的中点为.则,(1),(2)得:,.又,.弦中点轨迹在已知椭圆内,所求弦中点的轨迹方程为(在已知椭圆内).例2 直线(是参数)与抛物线的相交弦是,则弦的中点轨迹方程是 .解设,中点,则.,过定点,.又,(1),(2)得:,.于是,即.弦中点轨迹在已知抛物线内,所求弦中点的轨迹方程为(在已知抛物线内).3.求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。解:设椭圆的方程为,则设弦端点、,弦的中点,则, ,又,两式相减得即 联立解得,所求椭圆的方程是例3已知的三个顶点都在抛物线上,其中,且的重心是抛物线的焦点,求直线的方程.解由已知抛物线方程得.设的中点为,则三点共线,且,分所成比为,于是,解得,.设,则.又,(1),(2)得:,.所在直线方程为,即.例4已知椭圆的一条准线方程是,有一条倾斜角为的直线交椭圆于两点,若的中点为,求椭圆方程.解设,则,且,(1),(2)得:,(3)又,(4)而,(5)由(3),(4),(5)可得, 所求椭圆方程为.4.圆锥曲线上两点关于某直线对称问题例6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,这就是弦中点轨迹方程。它与直线的交点必须在椭圆内联立,得则必须满足,即,解得5. 求直线的斜率例5已知椭圆上不同的三点与焦点的距离成等差数列.(1)求证:;(2)若线段的垂直平分线与轴的交点为,求直线的斜率.(1)证略.(2)解,设线段的中点为.又在椭圆上,(1),(2)得:,.直线的斜率,直线的方程为.令,得,即,直线的斜率.6. 确定参数的范围例6 若抛物线上存在不同的两点关于直线对称,求实数的取值范围.解 当时,显然满足.当时,设抛物线上关于直线对称的两点分别为,且的中点为,则,(1),(2)得:,又,.中点在直线上,于是.中点在抛物线区域内,即,解得.综上可知,所求实数的取值范围是.7. 证明定值问题例7已知是椭圆不垂直于轴的任意一条弦,是的中点,为椭圆的中心.求证:直线和直线的斜率之积是定值.证明设且,则,(1),(2)得:,.又,(定值).8. 其它。看上去不是中点弦问题,但与之有关,也可应用。例9,过抛物线上一定点P()(),作两条直线分别交抛物线于A(),B()(1)求该抛物线上纵坐标为的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.解(1)略(2):设A(y12,y1),B(y22,y2),则 kAB= kPA= 由题意,kAB=-kAC, 则:kAB=为定值。例10、 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A、B,且OAOB,求p关于t的函数f(t)的表达式。(1)证明:抛物线的准线为 由直线x+y=t与x轴的交点(t,0)在准线右边,得 故直线与抛物线总有两个交点。 (2)解:设点A(x1,y1),点B(x2,y2) 【同步练习】1、已知:F1,F2是双曲线的左、右焦点,过F1作直线交双曲线左支于点A、B,若,ABF2的周长为( )A、4a B、4a+m C、4a+2m D、4a-m 2、若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是 ( )A、y2=-16x B、y2=-32x C、y2=16x D、y2=32x3、已知ABC的三边AB、BC、AC的长依次成等差数列,且,点B、C的坐标分别为(-1,0),(1,0),则顶点A的轨迹方程是( )A、 B、 C、 D、4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是 ( )A、 B、C、 D、5、已知双曲线上一点M的横坐标为4,则点M到左焦点的距离是 6、抛物线y=2x2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y2=2x的弦AB所在直线过定点p(-2,0),则弦AB中点的轨迹方程是 8、过双曲线x2-y2=4的焦点且平行于虚轴的弦长为 9、直线y=kx+1与双曲线x2-y2=1的交点个数只有一个,则k= 10、设点P是椭圆上的动点,F1,F2是椭圆的两个焦点,求sinF1PF2的最大值。11、已知椭圆的中心在原点,焦点在x轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l与此椭圆相交于A、B两点,且AB中点M为(-2,1),求直线l的方程和椭圆方程。12、已知直线l和双曲线及其渐近线的交点从左到右依次为A、B、C、D。求证:。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!