冬季砼施工规范

上传人:gbs****77 文档编号:9973044 上传时间:2020-04-09 格式:DOC 页数:61 大小:745.50KB
返回 下载 相关 举报
冬季砼施工规范_第1页
第1页 / 共61页
冬季砼施工规范_第2页
第2页 / 共61页
冬季砼施工规范_第3页
第3页 / 共61页
点击查看更多>>
资源描述
22 5 混凝土工程 22 5 1 基本要求 1 混凝土工程的冬期施工 要从施工期间的气温情况 工程特点和施工条 件出发 在保证质量 加快进度 节约能源 降低成本的前提下 选择适宜的 冬期施工措施 2 新浇筑的混凝土如果遭冻 拌合水冻结成冰 水结成冰后的体积增加约 9 同时水泥的水化作用也停止进行 在恢复正温养护以后 会使水泥浆体中 的孔隙率比正常凝结的混凝土显著增加 从而使混凝土的各项物理力学性能全 面下降 如抗压强度约损失 50 抗渗等级降低为零 混凝土与钢筋的粘结力 也有大幅度的降低 因此遭受过冻害的混凝土不仅力学强度降低 而且耐久性 能严重劣化 如在施工时增加混凝土中的水泥用量提高混凝土的强度等级 虽 然抗压强度可以相应增加 但耐久性仍得不到改善 因此从保证混凝土工程全 面质量出发 在冬期施工中必须防止混凝土在硬化初期遭受冻害 并尽早获得 强度 3 混凝土的温度降至 0 前 其抗压强度不得低于抗冻临界强度 抗冻临界强度规定如下 硅酸盐水泥或普通硅酸盐水泥配制的混凝土 为设计的混凝土强度标准值 的 30 矿渣硅酸盐水泥配制的混凝土 为设计的混凝土强度标准值的 40 但 C10 及 C10 以下的混凝土 不得低于 5 0N mm2 如施工需要提高混凝土强度等级时 应按提高后的强度等级确定 4 冬期施工的混凝土 为了缩短养护时间 一般应选用硅酸盐水泥或普通 硅酸盐水泥 用蒸汽直接养护混凝土时 应选用矿渣硅酸盐水泥 水泥的强度 等级不宜低于 42 5 每立方米混凝土中的水泥用量不宜少于 300kg 水灰比不 应大于 0 60 并加入早强剂 5 为了减少冻害 应将配合比中的用水量降低至最低限度 办法是 控制 坍落度 加入减水剂 优先选用高效减水剂 6 为了防止钢筋锈蚀 在钢筋混凝土中 氯盐掺量不得超过水泥重量的 1 按无水状态计算 掺氯盐的混凝土必须振捣密实 且不宜采用蒸汽养护 在下列情况下 不得在钢筋混凝土中掺用氯盐 1 在高湿度空气环境中使用的结构 排出大量蒸汽的车间 澡堂 洗衣 房和经常处于空气相对湿度大于 80 的房间以及有顶盖的钢筋混凝土蓄水池 等 2 处于水位升降部位的结构 3 露天结构或经常受水淋的结构 4 有镀锌钢材或铝铁相接触部位的结构 以及有外露钢筋预埋件而无防 护措施的结构 5 与含有酸 碱或硫酸盐等侵蚀性介质相接触的结构 6 使用过程中经常处于环境温度为 60 以上的结构 7 使用冷拉钢筋或冷拔低碳钢丝的结构 8 薄壁结构 中或重级工作制吊车梁 屋架 落锤或锻锤基础等结构 9 电解车间和直接靠近直流电源的结构 10 直接靠近高压电源 发电站 变电所 的结构 11 预应力混凝土结构 素混凝土中氯盐掺量不得大于水泥重量的 3 7 掺有尿素的混凝土 在自然干燥过程中 会在表面析出白色结晶物 影 响美观 因此尿素掺量不得超过水泥重的 4 掺有尿素的混凝土在封闭环境中 会散发出刺鼻臭味 影响人体健康 因此不能用于整体现浇的剪力墙结构或楼 盖结构 8 整体浇筑的结构 采用蒸汽加热养护时 混凝土的升温和降温速度 不 得超过表 22 27 的规定 混凝土的升温降温速度 表 22 27 表面系数 升温速度 h 降温速度 h 6 15 10 6 10 5 注 1 表面系数系指结构冷却的表面积 m2 与结构全部体积 m3 的比值 2 厚大体积的混凝土 应根据实际情况确定 9 用蒸汽直接加热养护混凝土时 当采用普通硅酸盐水泥时 混凝土的温 度不超过 80 当采用矿渣硅酸盐水泥时 可提高到 85 电热养护混凝土的温度 应符合表 22 28 的规定 电热养护混凝土的最高允许温度 表 22 28 表面系数水泥强度等级 10 10 15 15 32 5 70 50 45 42 5 40 40 35 10 模板和保温层 应在混凝土冷却到 5 后方可拆除 当混凝土与外界 温差大于 20 时 拆模后的混凝土表面 应临时覆盖 使其缓慢冷却 11 未完全冷却的混凝土有较高的脆性 所以结构在冷却前不得遭受冲击 荷载或动力荷载的作用 12 冬期施工期间 施工单位应与气象部门保持密切联系 随时掌握天气 预报和寒潮 大风警报 以便及时采取防护措施 22 5 2 混凝土的拌制 1 混凝土原材料加热应优先采用加热水的方法 当加热水仍不能满足要求 时 再对骨料进行加热 水 骨料加热的温度一般不得超过表 22 29 的规定 若达到规定温度后仍不能满足要求时 水的加热温度可提高到 100 但水泥 不得与 80 以上热水直接接触 投料时应先投入骨料和水 最后才投入水泥 拌合水及骨料最高温度 表 22 29 水泥种类 拌合水 骨料 强度等级小于 52 5 的普通硅酸盐水泥 矿渣硅酸盐水泥 80 60 强度等级等于及大于 52 5 的硅酸盐水泥 普通硅酸盐水泥 60 40 2 水和骨料可根据工地具体情况选择加热方法 但骨料不得在钢板上灼炒 水泥应储存在暖棚内 不得直接加热 3 骨料必须清洁 不得含有冰雪和冻块 以及易冻裂的物质 在掺有含钾 钠离子的外加剂时 不得使用活性骨料或混有活性材料的骨料 4 拌制掺外加剂的混凝土时 如外加剂为粉剂 可按要求掺量直接撒在水 泥上面和水泥同时投入 如外加剂为液体 使用时应先配制成规定浓度溶液 然后根据使用要求 用规定浓度溶液再配制成施工溶液 各溶液要分别置于有 明显标志的容器内 不得混淆 每班使用的外加剂溶液应一次配成 5 严格控制混凝土水灰比 由骨料带入的水分及外加剂溶液中的水分均应 从拌合水中扣除 6 拌制掺有外加剂的混凝土时 搅拌时间应取常温搅拌时间的 1 5 倍 7 混凝土拌合物的出机温度不宜低于 10 入模温度不得低于 5 8 混凝土拌合物的理论温度 可按下式计算 T0 0 9 m ceTce m saTsa m gTg 4 2T w m w w samsa w gmg c 1 w samsaTsa w gmgTg c 2 w mmsa w gmg 4 2mw 0 9 m ce m sa m g 22 10 式中 T0 混凝土拌合物温度 mw m ce m sa m g 水 水泥 砂 石的用量 kg Tw T ce T sa T g 水 水泥 砂 石的温度 wsa w g 砂 石的含水率 c1 c 2 水的比热容 kJ kg K 及冰的溶解热 kJ kg 当骨料温度 0 时 c 1 4 2 c 2 0 0 时 c 1 2 1 c 2 335 9 混凝土拌合物的出机温度 可按下式计算 T1 T 0 0 16 T 0 T i 22 11 式中 T1 混凝土拌合物出机温度 Ti 搅拌机棚内温度 22 5 3 混凝土的运输和浇筑 1 冬期施工运输混凝土拌合物 应使热量损失尽量减少 可采取下列措施 1 正确选择放置搅拌机的地点 尽量缩短运距 选择最佳的运输路线 2 正确选择运输容器的形式 大小和保温材料 3 尽量减少装卸次数并合理组织装入 运输和卸出混凝土的工作 2 混凝土在浇筑前 应清除模板和钢筋上的冰雪和污垢 装运拌合物的容 器应有保温措施 3 混凝土拌合物经运输到浇筑时的温度 可按下式计算 T2 T 1 tt 0 032n T 1 T a 22 12 式中 T2 混凝土拌合物经运输到浇筑时温度 tt 混凝土拌合物自运输到浇筑时的时间 h n 混凝土拌合物转运次数 Ta 混凝土拌合物运输时环境温度 温度损失系数 h 1 当用混凝土搅拌车输送时 0 25 当用开敞式大型自卸汽车时 0 20 当用开敞式小型自卸汽车时 0 30 当用封闭式自卸汽车时 0 1 当用手推车时 0 500 4 考虑模板和钢筋的吸热影响 混凝土浇筑成型完成时的温度 可按下式 计算 22 13 sfcmCTTmC 23 式中 T3 考虑模板和钢筋吸热影响 混凝土成型完成时的温度 Cc C f C s 混凝土 模板 钢筋的比热容 kJ kg K 混凝土取 1kJ kg K 钢材取 0 48kJ kg K mc 每立方米混凝土重量 kg mf m s 与每立方米混凝土相接触的模板 钢筋重量 kg Tf Ts 模板 钢筋的温度 未预热者可采用当时的环境气温 例 设每立方米混凝土中的材料用量为 水 150kg 水泥 300kg 砂 600kg 石 1350kg 材料温度为 水 70 水泥 5 砂 40 石 3 砂含 水率 5 石含水率 2 搅拌棚内温度为 5 混凝土拌合物用人力手推车运 输 倒运共 2 次 运输和成型共历时 0 5h 当时气温 5 与每立方米混凝土 相接触的钢模板和钢筋共重 450kg 并未预热 试计算混凝土浇筑完毕后的温 度 解 混凝土拌合物的理论温度 T0 0 9 300 5 600 40 1350 5 4 2 70 150 0 05 600 0 02 1350 4 2 0 05 600 40 2 1 0 02 1350 3 330 0 02 1350 4 2 150 0 9 300 600 1350 15 1 混凝土从搅拌机中倾出时的温度 T1 15 1 0 16 15 1 5 13 5 混凝土经运输成型后的温度 T2 13 5 0 5 0 5 0 032 2 13 5 5 7 7 混凝土因钢模板和钢筋吸热后的温度 T3 2400 1 7 7 450 0 48 5 2400 1 450 0 48 6 6 混凝土浇筑完毕后的温度为 6 6 5 冬期不得在强冻胀性地基土上浇筑混凝土 在弱冻胀性地基土上浇筑时 基土应进行保温 以免遭冻 6 用人工加热养护的整体式结构 其浇筑程序及施工缝的设置 应能防止 产生较大的温度应力 如混凝土的加热温度超过 40 时 可采取以下措施 1 支承在已浇筑完毕的厚大结构上的梁 应用钢板制成的垫板将梁与厚 大结构隔开 使梁在加热和冷却时可以自由伸缩 2 如梁不能按 1 所述方法进行浇筑 而在设计中又未考虑到附加温 度应力时 则梁的混凝土浇筑与加热应分段进行 段之间的间隔长度不应小于 1 8 梁的跨度 也不得小于 0 7m 间断处应在已浇筑的混凝土冷却至 15 以下 时 才可用混凝土填实并加热养护 3 与支座不做刚性连接的连接梁 应在长度不超过 20m 的段落上同时 加热 4 多跨刚架的连续横梁 如刚架支柱的高度与横梁截面高度之比小于 15 时 应按 2 所规定的方法浇筑和加热混凝土 当刚架的跨度 8m 时 应 每隔两个跨度留出间断处 当刚架的跨度 8m 时 应每隔一个跨度留出间断处 5 与小跨度的大型横梁相连的高柱 应按同一高度进行混凝土的浇筑和 加热 否则在柱子之间的横梁上留出间断处 6 互相平行又彼此间以刚性连接的梁 在同一柱上又与柱刚性连接的两 根吊车梁 应同时进行加热 7 浇筑和加热肋形楼板时 应按 2 和 4 规定进行 在纵向和横向 两个方向留在间断处 梁与板应同时进行浇筑和加热养护 7 浇筑基础大体积混凝土时 施工前要对地基进行保温以防止冻胀 新拌 混凝土的入模温度以 7 12 为宜 混凝土内部温度与表面温度之差不得超过 20 必要时应做保温覆盖 8 浇筑装配式结构接头的混凝土 或砂浆 应先将结合处的表面加热到正 温 浇筑后的接头混凝土 或砂浆 在温度不超过 45 的条件下 应养护至设 计要求强度 当设计无要求时 其强度不得低于设计的混凝土强度标准值的 75 9 预应力混凝土构件在进行孔道和立缝的灌浆前 浇灌部位的混凝土须经 预热 并宜采用热的水泥浆 砂浆或混凝土 浇灌后在正温下养护到强度不低 于 15N mm2 22 5 4 混凝土强度估算 1 在冬期施工中 需要及时了解混凝土强度的发展情况 例如当采用蓄热 养护工艺时 混凝土冷却至 0 前是否已达到抗冻临界强度 当采用人工加热 养护时 在停止加热前混凝土是否已达到预定的强度 当采用综合养护时 混 凝土的预养时间是否足够等 在施工现场留置同条件养护试件做抗压强度试验 固然可以解决一部分问题 但所做试件很难与结构物保持相同的温度 因此代 表性较差 又由于模板未拆 也不能使用任何非破损方法进行测试 因此 运 用计算的方法对混凝土强度进行估计或预测是很有实用价值的 2 用普通硅酸盐水泥和矿渣硅酸盐水泥拌制的混凝土 在各种养护温度下 的强度增长率分别如图 22 22 和图 22 23 图 22 22 用普通硅酸盐水泥拌制的混凝土 图 22 23 用矿渣硅酸盐水泥拌制的混凝土 3 用普通硅酸盐水泥和矿渣硅酸盐水泥拌制并掺有早强减水剂的混凝土 在各种养护温度下的强度增长率分别如图 22 24 和图 22 25 图 22 24 用普通水泥拌制并掺有早强减水剂的混凝土 图 22 25 用矿渣水泥拌制并掺有早强减水剂的混凝土 4 采用负温混凝土工艺 用普通硅酸盐水泥和矿渣硅酸盐水泥拌制 并掺 有适量防冻剂的混凝土 在负温条件下的强度增长率分别如图 22 26 和图 22 27 图 22 26 用普通硅酸盐水泥拌制并掺有防冻剂的混凝土 图 22 27 用矿渣硅酸盐水泥拌制并掺有防冻剂的混凝土 5 当混凝土的养护温度为一变量时 混凝土的强度可用成熟度的方法来估 算 其原理是 相同配合比的混凝土 在不同的温度 时间下养护 只在成熟 度相等 其强度大致相同 计算方法如下 1 适用范围 本法适用于不掺外加剂在 50 以下正温养护和掺外加剂在 30 以下正温养 护的混凝土 亦可用于掺防冻剂的负温混凝土 本法适用于估算混凝土强度标准值 60 以内的强度值 2 前提条件 使用本法估算混凝土强度 需要用实际工程使用的混凝土原材料和配合比 制作不少于 5 组混凝土立方体标准试件 在标准条件下养护 得出 1 2 3 7 28d 的强度值 使用本法同时需取得现场养护混凝土的温度实测资料 温度 时间 3 用计算法估算混凝土强度的步骤 1 用标准养护试件 1 7d 龄期强度数据 经回归分析拟合成下列形式曲线 方程 22 14 D baef 式中 f 混凝土立方体抗压强度 N mm2 D 混凝土养护龄期 d a b 参数 2 根据现场的实测混凝土养护温度资料 用式 22 15 计算混凝土已达 到的等效龄期 相当于 20 标准养护的时间 t T tT 22 15 式中 t 等效龄期 h T 温度为 T 的等效系数 按表 22 30 采用 tT 温度为 T 的持续时间 h 3 以等效龄期 t 代替 D 代入公式 22 14 可算出强度 4 用图解法估算混凝土强度的步骤 等效系数 T 表 22 30 温度 T 等效系数 T 温度 T 等效系数 T 温度 T 等效系数 T 50 3 16 28 1 45 6 0 43 49 3 07 27 1 39 5 0 40 48 2 97 26 1 33 4 0 37 47 2 88 25 1 27 3 0 35 46 2 80 24 1 22 2 0 32 45 2 71 23 1 16 1 0 30 44 2 62 22 1 11 0 0 27 43 2 54 21 1 05 1 0 25 42 2 46 20 1 00 2 0 23 41 2 38 19 0 95 3 0 21 40 2 30 18 0 91 4 0 20 39 2 22 17 0 86 5 0 18 38 2 14 16 0 81 6 0 16 37 2 07 15 0 77 7 0 15 36 1 99 14 0 73 8 0 14 35 1 92 13 0 68 9 0 13 34 1 85 12 0 64 10 0 12 33 1 78 11 0 61 11 0 11 32 1 71 10 0 57 12 0 11 31 1 65 9 0 53 13 0 10 30 1 58 8 0 50 14 0 10 29 1 52 7 0 46 15 0 09 1 根据标准养护试件各龄期强度数据 在坐标纸上画出龄期 强度曲线 2 根据现场实测的混凝土养护温度资料 计算混凝土达到的等效龄期 3 根据等效龄期数值 在龄期 强度曲线上查出相应强度值 即为所求值 例 某混凝土在试验室测得 20 标准养护条件下的各龄期强度值如表 22 31 混凝土浇筑后测得构件的温度如表 22 32 试估算混凝土浇筑后 38h 时 的强度 标养试件试验结果 表 22 31 标养龄期 d 1 2 3 7 抗压强度 N mm2 4 0 11 0 15 4 21 8 测温记录 表 22 32 从浇筑起算的时间 h 0 2 4 6 8 10 12 38 温度 14 20 26 30 32 36 40 40 解 1 当采用计算法时 根据表 22 31 的数据 通过回归分析求得曲 线方程为 Def98 145 2 2 当采用图解法时 将表 22 31 中的数据在坐标纸上绘出龄期 强度曲 线 如图 22 28 图 22 28 某混凝土的龄期 强度曲线 标养 3 根据测温记录 计算出整个养护过程中的时间 温度关系如表 22 33 并计算等效龄期 养护过程的时间 温度关系 表 22 33 时间间隔 h 2 2 2 2 2 2 26 平均温度 17 23 28 31 34 38 40 等效龄期 t 2 0 86 2 1 16 2 1 45 2 1 65 2 1 85 2 2 14 26 2 30 78h 3 25d 4 根据等效龄期估算混凝土强度 当采用计算法时 将 t 值作为龄期 D 代入曲线方程 得 16 0N mm 225 3 9814 ef 当采用图解法时 在图 22 28 上找到相应的点 查得强度值为 16 0N mm2 6 当采用综合蓄热法施工时 混凝土如果在达到抗冻临界强度值之前就撤 除保温材料 混凝土会遭受冻害 如果在达到抗冻临界强度值之后继续保温 则势必影响工程进度 用以下方法可以找到混凝土浇筑后达到抗冻临界强度的 时刻 1 使用与施工混凝土相同的材料和配合比 配制混凝土并制备抗压试件 6 块 成型后立即放进 20 标准养护室 养护至 24h 时取出试压 从试压数据 中舍弃最大和最小值 取中间 4 个数据计算其平均值 作为该种混凝土标养 24h 的强度 f 1 2 根据 f1 与该种混凝土的设计强度 f 设 的比值 按表 22 34 查出该种 混凝土强度 0 点的标养时间 强度 0 点取值表 表 22 34 f1 f 设 比值 强度 0 点的标养时间 h 10 12 10 20 9 20 30 7 30 40 5 5 40 4 3 以标养时间 h 为横坐标 以强度 MPa 为纵坐标 建立坐标系 将强度 0 点的标养时间标绘在横坐标上 再将 f1 标绘在 24h 处 做直线相连 在该直线上查到强度达到 4MPa 时所需的标准养护时间 t0 h 4 计算成熟度的公式如下 M 22 16 ttT0 15 式中 M 混凝土成熟度 h T 混凝土温度 t 两次测温间隔时间 h 5 将 t0 作为 t T 为 20 代入公式 22 16 再除以平均差值系数 0 8 所得值即为达到抗冻临界强度的成熟度值 6 工地在实际施工时 应做好测温记录 根据混凝土的实际养护温度与 养护时间 按公式 22 16 计算成熟度 当达到抗冻临界强度的成熟度时 即 可停止保温 22 5 5 蓄热法养护 1 工艺特点 将混凝土的组成材料进行加热然后搅拌 在经过运输 振捣后仍具有一定 温度 浇筑后的混凝土周围用保温材料严密覆盖 利用这种预加的热量和水泥 的水化热量 使混凝土缓慢冷却 并在冷却过程中逐渐硬化 当混凝土温度降 至 0 时可达到抗冻临界强度或预期的强度要求 蓄热法具有经济 简便 节能等优点 混凝土在较低温度下硬化 其最终 强度损失小 耐久性较高 可获得较优质量的制品 但用蓄热法施工 强度增 长较慢 因此宜选用强度等级较高 水化热较大的硅酸盐水泥 普通硅酸盐水 泥或快硬硅酸盐水泥 同时选用导热系数小 价廉耐用的保温材料 保温层敷 设后要注意防潮和防止透风 对于构件的边棱 端部和凸角要特别加强保温 新浇混凝土与已硬化混凝土连接处 为避免热量的传导损失 必要时应采取局 部加热措施 2 适用范围 当结构表面系数较小或气温不太低时 应优先采用蓄热法施工 蓄热法的适用范围大致如表 22 35 所示 蓄热法适用范围 表 22 35 结构表面系数室外平均气温 5 7 5 7 5 10 10 12 5 12 5 15 0 蓄热法 蓄热法 蓄热法 蓄热法 2 蓄热法 蓄热法 蓄热法 综合蓄热法 5 蓄热法 蓄热法 综合蓄热法 综合蓄热法 8 蓄热法 综合蓄热法 综合蓄热法 10 综合蓄热法 综合蓄热法 注 综合蓄热法即在蓄热法工艺的基础上 在混凝土中掺入防冻剂 以延长硬化时间和 提高抗冻害能力 3 热工计算 蓄热法热工计算的依据是热量平衡原理 即每立方米混凝土从浇筑完毕时 的温度下降到 0 的过程中 透过模板和保温层所放出的热量 等于混凝土预 加热量和水泥在此期间所放出的水化热之和 当施工条件 结构尺寸 材料配比 浇筑后的温度和养护期间的预测气温 确定以后 先初步选定保温材料的种类 厚度和构造 然后计算出混凝土冷却 到 0 的延续时间和混凝土在此期间的平均温度 据此再用成熟度方法估算出 混凝土可能获得的强度 如所得结果达不到抗冻临界强度值或预期的强度要求 则需调整某些施工条件或修改保温层设计 再进行计算 直至符合要求为止 蓄热法的热工计算按以下方法进行 1 混凝土蓄热养护开始到任一时刻 t 的温度 可按下式计算 22 17 2 混凝土蓄热养护开始到任一时刻 t 的平均温度 可按下式计算 22 18 其中 为综合参数 按下式计算 式中 T 混凝土蓄热养护开始到任一时刻 t 的温度 Tm 混凝土蓄热养护开始到任一时刻 t 的平均温度 t 混凝土蓄热养护开始到任一时刻的时间 h Tm a 混凝土蓄热养护开始到任一时刻 t 的平均气温 c 混凝土的质量密度 kg m 3 mce 每立方米混凝土水泥用量 kg m 3 Qce 水泥水化累积最终放热量 kJ kg vce 水泥水化速度系数 h 1 透风系数 M 结构表面系数 m 1 K 结构围护层的总传热系数 kJ m2 h K e 自然对数底 可取 e 2 72 注 结构表面系数 M 值可按下式计算 M A V 式中 A 混凝土结构表面积 m 2 v 混凝土结构的体积 m 3 结构围护层总传热系数可按下式计算 nidK104 6 di 第 i 层围护层厚度 m i 第 i 层围护层的导热系数 W m K 平均气温 Tm a 取法 可采用蓄热养护开始至 t 时气象预报的平均气温 亦可按每时或每日平均气温计算 水泥水化累积最终放热量 Qce 水泥水化速度系数 vce 及透风系数 取值 见表 22 36 和表 22 37 水泥水化累积最终放热量 Qce 和水化速度系数 vce 表 22 36 水泥品种及强度等级 Qce kJ kg vce h 1 52 5 号硅酸盐水泥 400 52 5 号普通硅酸盐水泥 360 42 5 号普通硅酸盐水泥 330 0 013 42 5 号矿渣 火山灰 粉煤灰硅酸盐水泥 240 透风系数 表 22 37 透风系数围护层种类 小风 中风 大风 围护层由易透风材料组成 2 0 2 5 3 0 易透风保温材料外包不易透风材料 1 5 1 8 2 0 围护层由不易透风材料组成 1 3 1 45 1 6 注 小风 风速 vw 3m s 中风 风速 3 v w 5m s 大风 风速 vw 5m s 3 当需要计算混凝土蓄热养护冷却至 0 的时间时 可根据公式 22 17 采用逐次逼近的方法进行计算 如果蓄热养护条件满足 且5 1 amT KM 50 时 也可按下式直接计算 22 19 amceTvt 0ln1 式中 t0 混凝土蓄热养护冷却至 0 的时间 h 混凝土冷却至 0 的时间内 其平均温度可根据公式 22 18 取 t t 0 进行 计算 4 混凝土蓄热养护的有关参数 也可用图 22 29 和表 22 38 查得 各种保温模板的传热系数 表 22 38 保温模板构造 传热系数 K W m 2 K 钢模板 区格间填以聚苯乙烯板 50mm 厚 3 0 钢模板 区格间填以聚苯乙烯板 50mm 厚 外包岩棉毡 30mm 厚 0 9 钢模板 外包毛毡三层 20mm 厚 3 5 木模板 25mm 厚 外包岩棉毡 30mm 厚 1 1 木模板 25mm 厚 外包草帘 50mm 厚 1 0 图 22 29 用普通 42 5 级水泥拌制的混凝土蓄热计算图 入模温度 20 例 一批钢筋混凝土柱 断面为 300mm 400mm 用普通 42 5 号水泥 拌制 混凝土浇筑后的温度为 20 预计养护期间室外平均气温为 10 要求 混凝土温度降至 0 时达到 50 的设计强度 求保温条件和构件冷却时间 平 均温度 解 先计算构件的表面系数 7 14 032 M 使用图 22 29 中 M 12 5 的一栏 在 达到设计强度的百分率 中找出 50 的强度线与 10 的气温线相交 在纵坐标上查得 K 0 9W m 2 K 然 后在 K 0 9 的水平线与 10 气温线相交处分别查得冷却时间为 5d 平均温度 为 10 根据 K 值在表 22 38 各种保温模板的传热系数 中选用 钢模板 在钢 模板的区格间填以聚苯乙烯板 50mm 厚 外包岩棉毡 30mm 厚 但在构件的自 由端应将岩棉毡加厚至 100mm 构件的根部与原有混凝土连接处应局部短期加 热 4 施工注意事项 1 混凝土浇筑后要在裸露的混凝土表面先用塑料薄膜等防水材料覆盖 然后铺设保温材料 对于端部其厚度要增大到面部的 2 3 倍 2 混凝土浇筑后应有一套严格的测温制度 如发现混凝土温度下降过快 或遇寒流袭击 应立即采取补加保温层或人工加热措施 3 采用组合钢模板时 宜采用整装整拆方案 并确保模板保温效果和减 少材料消耗 为了便于脱模 可在混凝土强度达到 1N mm2 后 使侧模板轻轻 脱离混凝土再合上继续养护到拆模 22 5 6 暖棚法养护 1 工艺特点 在建筑物或构件周围搭起大棚 通过人工加热使棚内空气保持正温 混凝 土的浇筑与养护均在棚内进行 本法的优点是 施工操作与常温无异 劳动条 件较好 工作效率较高 同时混凝土质量有可靠保证 不易发生冻害 缺点是 暖棚搭设需大量材料和人工 供热需大量能源 费用较高 由于棚内温度较低 通常不超过 10 所以混凝土强度增长较慢 2 适用范围 暖棚法适用于混凝土工程较为集中的区域 尤某适用于混凝土量较多的地 下工程 当日平均气温低于 10 时 暖棚法不易奏效 3 暖棚构造 暖棚通常以脚手材料 钢管或木杆 为骨架 用塑料薄膜或帆布围护 塑 料薄膜可使用厚度大于 0 1mm 的聚乙烯薄膜 也可使用以聚丙烯编织布和聚丙 烯薄膜复合而成的复合布 塑料薄膜不仅重量轻 而且透光 白天不需要人工 照明 吸收太阳能后还能提高棚内温度 加热用的能源一般为煤或焦炭 也可使用以电 燃气 煤油或蒸汽为能源 的热风机或散热器 4 能耗计算 暖棚内的热量消耗 可根据暖棚尺寸 围护构造 地面的导热系数和室内 换气次数 一般按每小时 2 次计算 等来计算确定 也可从表 22 39 中查出 加热 100m3暖棚的耗热量 kJ h 表 22 39 围护结构的传热系数 W m2 K 内外温差 暖棚表面 系数 11 6 3 8 2 4 1 6 1 2 0 5 42000 13800 8400 5800 4600 1 0 84000 27600 16800 11600 920020 2 0 168000 55200 33600 23200 18400 0 5 63000 20700 12500 8800 6900 1 0 126000 41400 25000 17600 1380030 2 0 252000 82800 50000 35200 27600 0 5 84000 27600 16750 11700 9200 1 0 168000 55200 33500 23400 1840040 2 0 336000 110400 67000 46800 36800 注 本表所查出的耗热量尚应根据风力情况再乘以围护结构散热系数 当风速在 5m s 以 内时乘以 1 25 1 5 当风速大于 5m s 时 乘以 1 5 2 0 5 施工注意事项 1 暖棚出入口应设专人管理 以防封闭不严造成棚内温度下降或混凝土 局部受冻 2 棚内各点温度均不得低于 5 3 注意棚内湿度 经常观察混凝土是否有失水现象 若失水时 要及时 采取增湿措施或在混凝土表面洒水养护 4 将烟或燃烧气排出棚外 注意防火防毒 22 5 7 电热法养护 1 电热毯加热法 用电热毯作为加热元件 适用于以钢模板浇筑的构件 电热毯由四层玻璃 纤维布中间夹以电阻丝制成 制作时先将 0 6mm 铁铬铝合金电阻丝在适当直径 的石棉绳上缠绕成螺旋状 按蛇形线路铺设在玻璃纤维布上 电阻丝之间的档 距要均匀 转角处避免死弯 经缝合固定 电热毯的尺寸根据钢模板背后的区 格大小而定 约为 300mm 400mm 电压 60V 功率每块 75W 通电后表面温 度可达 110 但应按规范规定控制 在钢模板的区格内卡入电热毯后 再覆盖岩棉板作为保温材料 外侧用 108 胶粘贴水泥袋纸两层挡风 对大模板现浇墙体加热时 由于墙体的顶部 底部以及与外墙相连处散热 较多 这些部位的电热毯应双面密布 中间部位可以较疏或两面交错铺设 在混凝土浇筑前先通电将模板预热 浇筑过程中留出测温孔 浇筑后定期 测温并做记录 养护过程中根据混凝土温度变化可继续送电 热工计算 1 混凝土构件在升温阶段每小时所需热量 Q1 V c 0 T 22 20 式中 Q1 混凝土每小时升温所需热量 kJ V 混凝土体积 m 3 混凝土质量密度 取 2400kg m3 c0 混凝土比热容 取 1 00kJ kg K T 每小时升温温度 2 钢模板及保温材料加热所需热量 Q2 m 1c1 T m 2c2 T 22 21 式中 Q2 钢模板及保温材料加热所需热量 kJ m1 m 2 钢模板 保温材料重量 kg c1 c 2 钢模板 保温材料比热容 kJ kg K T 每小时升温温度 3 每小时内散失热量 22 22 213 qTAQ 式中 Q3 构件每小时散失热量 kJ A 散热面积 m 2 T 混凝土温度 Tq 室外大气温度 1 2 各层保温材料导热系数 W m K 1 2 各层保温材料厚度 m 4 需要布设的电热毯功率 22 23 6 321QP 式中 P 需要布设的电热毯功率 W 3 6 换算系数 1W h 3 6kJ 例 某工程混凝土墙体厚 0 16m 室外大气温度 10 混凝土浇筑后的 温度 15 每小时升温 5 恒温 30 每块电热毯功率 75W 用 50mm 厚岩 棉板保温 200kg m3 0 07W m K c 0 75kJ kg K 钢模 板双面共重 112kg m2 c 0 48kJ kg K 试计算每平方米墙体需布设电热 毯的数量 解 Q1 1 0 16 2400 1 5 1920kJ Q2 112 0 48 5 2 0 05 200 0 75 5 344kJ Q3 2 30 10 0 07 0 05 112kJ P 1920 344 112 3 6 660W 则在每平方米墙体的两侧共需布设电热毯 660 75 9 块 2 工频涡流加热法 1 工艺特点 在钢模板的外侧布设钢管 钢管与板面紧贴并焊牢 管内穿以导线 当导 线中有电流通过时 在管壁上产生热效应 通过钢模板将热量传导给混凝土 使混凝土升温 在通常情况下 每平方米模板面约需布设 15 1 2 钢管 5m 用截面积为 25 35mm 2 的铝芯线作导线 通以电压为 100 140V 的电流 在室外最低气温为 20 的条件下 混凝土达到 40 强度标准值的耗电量约为 130kW h m3 为了减少热损失 降低能耗 在模板外面应使用毛毡 矿棉板 或聚氨酯泡沫等材料保温 主要工艺参数 三相交流输入电压 380V 三相交流输出电压 100 140V 钢管极限功率 195W m 模板输出功率 0 8 1 13kW m 2 模板输出热量 2900 4000 目 h m 2 用这种工艺来加热混凝土 温度比较均匀 控制方便 缺点是需要制作专 用模板 增加了模板的投资 2 适用范围 适用于以钢模板浇筑的混凝土墙体 梁 柱和接头 3 作用原理 在工业和日常生活中所用交流电的频率为 50Hz 通称工频 根据电磁感应 原理 一根有交变电流通过的导体穿过导磁率较高的铁管时 在管壁上产生交 变闭路磁场 由于铁管有一定厚度 就感应产生了电动势和电流 沿管子长度 方向呈旋涡式流动 称为涡流 由于铁管电阻的存在 旋涡式流动的涡流 在 管壁内产生热效应 热量通过钢模板传导给了混凝土 4 施工方法 1 在大模板现浇墙体上的应用 从两侧加热 涡流管横向焊在大模板上 中心距离在底部及顶部为 150 200mm 中部为 400mm 为了使混凝土受热均匀 在两侧模板上的涡流 管可互相错开 见图 22 30 图 22 30 墙体养护示意 1 大模板 2 涡流管 3 导线 2 在梁 柱结构上的应用 梁 柱结构可根据结构厚度和热工计算 采用两面 三面或四面加热 如 图 22 31 和图 22 32 图 22 31 梁养护示意 1 钢模 2 涡流管 3 导线 图 22 32 柱养护示意 1 钢模 2 涡流管 3 导线 3 在梁柱接头上的应用 将涡流管直接埋在混凝土中 待混凝土浇筑后即通电加热 达到要求强度 后停止送电并将导线抽出 涡流管留在混凝土中不再拆除 埋入混凝土中的涡 流管总长度 根据混凝土量按 60kW m3 功率计算 节点外围必须保温养护 如 图 22 33 图 22 33 梁柱接头养护示意 1 模板 2 涡流管 3 导线 5 热工计算 与电热毯加热法相同 6 模板功率计算 1 涡流管的饱和电流及电压值 根据通有电流的直线导体磁场强度公式 得出计算涡流管管壁中心磁场强 度公式 22 24 5 0 2 RIH 式中 H 涡流管管壁中心磁场强度 当磁感应达到饱和强度时 磁场强度 Hk 40A cm I 直线导体通过的电流 A R 钢管外半径 cm 钢管壁厚 cm 当涡流管为 15 1 2 钢管 R 1 062cm 0 275cm 时的饱和电流 值 I k 可根据上式算出 Ik 2 0 9 40 226A 根据试验 在 15 涡流管中通过的电流达到饱和值时 每米长导线两端的 电压降 Uk 1 125V 2 功率因素及涡流管单位长度的极限功率 涡流管的极限功率按下式计算 Pk I kUkcos 22 25 式中 Pk 涡流管单位长度的极限功率 W m Ik 饱和电流值 A Uk 导线单位长度饱和电压降 V m cos 功率因素 经试验求得为 0 8 则 15 涡流管的极限功率为 Pk 226 1 125 0 8 204W m 3 钢模板单位面积的极限功率 钢模板的极限功率按下式计算 Ps lP k 22 26 式中 Ps 模板单位面积的极限功率 W m 2 l 在单位面积模板上布设的涡流管总长度 m m 2 在每平方米模板上如布设 15 涡流管 5m 则每平方米模板的极限功率为 Ps 5 204 1020W m 2 7 电气控制 电气控制采用可控硅反并联电压调节方式 如图 22 34 这种方式具有调节 方便 效率高 易实现自动化的优点 各阶段送电功率 取预养与恒温阶段功 率相同 升温阶段功率为预养阶段功率的 2 2 倍 预养 恒温阶段变压器为 Y 形接线 升温阶段为 形接线 图 22 34 电气控制 1 自动空气开关 2 接触器 3 可控硅 4 电流互感器 5 变压器 6 导线 7 涡流管 3 线圈感应加热法 1 工艺特点 用绝缘电缆缠绕在梁 柱构件的外面以形成线圈 通电后使钢模板 钢筋 或构件内所含的型钢发热升温并加热混凝土 线圈感应加热法的优点是 易于控制 加热均匀 只要线圈设置得当 可 使混凝土内部温度差控制在 5 以内 浇筑前还可对模板及钢筋进行预热 2 适用范围 适用于以钢模板浇筑的或中间含有型钢作为劲性骨架的梁 柱构件的加热 养护 也可作为某些因措施不当面临受冻危险的梁 柱构件的加热补救措施 但不适用于墙 板构件的加热养护 3 作用原理 当线圈内通入交变电流时 线圈内及线圈周围会产生交变磁场 如果在线 圈中间放入铁芯 会在铁芯内产生涡电流 并将电能转变为热能 因而当电缆 内通以交流电后 处在线圈中间的钢模板等钢铁部件因感应而发热 同时将热 量传给混凝土 达到加热混凝土的目的 4 施工方法 1 变压器 一般选择 50kVA 或 100kVA 低压变压器 电压在 36 110V 间调整 混凝土量较少时 也可利用交流电焊机 变压器容量宜较设计结果增 加 20 50 2 感应线圈宜选用 35mm2 铝质或铜质电缆 以橡胶绝缘为佳 主电缆可 选用 150mm2 电流不宜超过 400A 3 感应线圈缠绕时 应尽量靠近钢模板 以提高功率因数 在缠绕电缆时 构件两端线圈的间距应为中间部分的 1 2 两端加密范围为一个线圈直径的长度 构件端部要密缠 5 圈 4 当确认线路布置正确 连接牢固 绝缘可靠后 方可通电 通电后用仪 表随时检测电流 电压是否与工艺设计相符 并根据具体情况调整电路参数 4 电极法 在混凝土结构的内部或表面设置电极 通以低压电流 由于混凝土的电阻 作用 使电能变为热能 产生热量对混凝土进行加热 电极法适用于以木模板浇筑的混凝土构件 耗钢量较大 耗电量也比其他 方法为高 因此不宜普遍推广 只能在特殊条件下使用 电极法采用交流电 直流电会使混凝土内水分分解 工作电压宜为 50 110V 在无筋结构中和每立方米混凝土中含钢量不大于 50kg 的结构中 可采用 120 220V 电极种类及适用范围见表 22 40 电极种类及适用范围 表 22 40 分类 特点 适用范围 表面电极法 将电极固定在木模板内侧 电极可用 6mm 的钢筋或宽 40 60mm 的白铁皮做成 电极的间距 钢筋为 20 30cm 白铁皮为 10 15cm 表面电极法配极简单 间距易控制 常用于墙 梁及 基础等结构 捧形电极法 电极用 6 12mm 直径的钢筋断料制成 直接由结构物表 面插人或穿过木模板放入混凝土内 其长度由结构断面 而定 棒形电极不易发生短路 但其耗钢量较大 常用于柱 梁及 基础等结构 弦形电极法 电极用 6 10mm 的钢筋制成 每段长 2 5 3m 混凝土 浇筑前用绝缘垫块将电极固定在箍筋上 电极端部弯成 直角露出木模板 弦形电极耗钢量较大 常用于钢筋不多 的柱 梁及厚度 大于 20cm 的板 和基础等结构 在柱 梁内棒形电极的设置参见图 22 35 和图 22 36 其中同极间距 h 和异 极间距 b 可由表 22 41 确定 电极与钢筋的最小距离不得超过表 22 42 的规定 图 22 35 柱内棒形电极布置 图 22 36 梁内棒形电极布置 1 模板 2 钢筋 3 电极 h 同极间距 b 异极间距 电极间距 表 22 41 最大功率 kW m 3 时的距离 cm 电压 V 代号 2 5 3 4 5 6 7 8 9 10 b 39 36 32 28 26 25 23 22 2151 h 15 13 12 10 10 10 8 7 7 b 51 48 42 37 34 32 30 28 2465 h 14 13 11 10 9 8 8 7 7 b 71 65 57 51 47 43 41 38 3687 h 13 13 11 10 9 8 8 7 7 b 89 81 71 69 58 54 51 48 46106 h 14 12 11 9 9 8 7 7 7 b 192 175 152 146 124 115 108 102 96220 h 13 12 10 9 8 8 7 7 7 注 1 电压为开始电加热时使用的电压 2 使用单相电时 b 值不变 h 值减小 10 15 电极与钢筋的最小距离 表 22 42 电压 V 65 87 106 电极与钢筋的最小距离 cm 5 7 8 10 12 15 注 配筋密度大 不能保证钢筋与电极间的上表规定的距离时 应隔以适当的绝缘物质 振捣时要避免接触电极及其支架 电路接好经检查合格后方可合闸送电 当结构工程量较大 需边浇筑边通 电时 应将钢筋接地线 电热现场应设围栏 防止人畜接近 当混凝土浇筑完毕后 应将混凝土的外露表面覆盖 在通电养护过程中应 注意观察混凝土表面的温度和湿度 如出现干燥现象 应切断电源用温水湿润 混凝土表面再继续通电养护 混凝土的升温速度和降温速度以及恒温温度均应符合规定 施工时可采用 调节电压或间断送电的办法来控制 为保证具有不同体型的结构各部分能获得 相同的冷却条件 对于薄型结构 突出的部位以及其他容易冷却的部位 应加 强保温 电极法的热工计算与电热毯加热法同 22 5 8 远红外线养护 1 工艺特点 利用远红外辐射器向新浇筑的混凝土辐射远红外线 使混凝土的温度得以 提高 从而在较短时间内获得要求的强度 这种工艺具有施工简便 降低能耗 等优点 远红外辐射器 根据其所采用的能源 可分为三大类 1 电热远红外辐 射器 2 蒸汽远红外辐射器 3 煤气远红外辐射器 电热和蒸汽远红外辐射器 通常在发热元件上涂以远红外涂料而成 煤气 远红外辐射器则有金属网式和陶瓷板式两大类 常用的远红外涂料的名称及其主要参数见表 22 43 常用的远红外涂料 表 22 43 涂料名称 Fe2O3 Cr2O3 SiC CO2O3 TiO2 SiO2 ZrO2 MnO2 温度 400 370 400 380 380 380 370 辐射率 0 72 0 65 0 84 0 80 0 65 0 72 0 81 0 78 氧化铁红 Fe 2O3 由于价廉易得 是工地常用的远红外涂料 胶粘剂可用 硅溶胶或水玻璃 配制和涂刷方法如下 重量比 氧化铁红 硅溶胶 水 2 1 1 硅溶胶与水先调合 再徐徐注入氧化铁红粉料中 同时进行机械搅拌 约 2 3h 使之成为油漆状 在元件表面用砂纸或喷砂清理干净 再用丙酮洗 净 预热至 40 50 便开始涂刷已搅拌好的涂料 涂层厚度不宜超过 0 2mm 涂刷后立刻放在 70 80 温度上烘烤 2h 即可使用 也有的单位使用复合涂料 参考配方如下 1 Fe 2O3 55 ZrO 2 30 Cr 2O3 5 MnO 2 5 SiO 2 2 CO 2O3 3 2 Fe 2O3 58 ZrO 2 30 Cr 2O3 5 MnO 2 5 SiO 2 2 3 TiO 2 20 Fe 2O3 80 2 作用机理 红外线和可见光一样 都是电磁波 红外线的波长为 0 72 1000 m 介 于可见光与微波之间 在红外线范围内 一般将波长在 4 m 以下的称近红外 线 4 m 以上的称远红外线 红外线与光波相同 具有直线传播的特性 并有反射 折射 透射及吸收 等现象 不同波长的红外线对不同物质所产生的效果是不同的 用远红外线来 辐射混凝土 当发射波长与混凝土组成材料的吸收波长相匹配时 新拌混凝土 作为远红外线的吸收介质 在远红外线的共振作用下 介质分子做强烈运动 将辐射能充分转换成热能 使混凝土升温 3 适用范围 管式电热远红外辐射器可用于工地柱 梁的内部加热 也可用于以钢模板 浇筑的剪力墙 大板建筑竖向接缝和现场预制构件的外部加热 蒸汽和煤气远红外辐射器通常用于预制厂内加热预制构件 4 远红外辐射器的设计计算 1 辐射器表面温度计算 T 2897 22 27 式中 T 辐射器表面温度 K 被加热物体对远红外线最大吸收峰的波长 m 例 利用远红外辐射器加热混凝土 已知水对于 3 7 m 14 16 m 波长有吸收特性 水泥 砂 石对于 3 9 m 波长有吸收特性 新拌混凝土对 远红外线的吸收波长按 4 m 计算 求辐射器表面温度 解 T 2897 4 724K 451 2 辐射器的表面积计算 22 28 10 44cQA 式中 A 辐射器的表面积 m 2 Q 辐射器的发热量 kJ h c 黑体辐射系数 取 16 7kJ m 2 h K4 T 辐射器表面温度 K T0 被加热物体表面温度 K 例 根据结构加热要求已算出需热量 Q 5024kJ h 根据混凝土的吸收 峰值算出 T 724K T 0 定为 353K 80 求辐射器表面积 解 24416 0 35 1072 6mA 3 电热远红外辐射器的功率计算 P Q 3 6 22 29 式中 P 辐射器功率 W Q 辐射器的发热量 kJ h 热效率 取 0 85 3 6 换算系数 1W h 3 6kJ 例 已知每个电热远红外辐射器每小时发热量为 5024kJ 求电功率 解 P 5024 3 6 0 85 1642W 4 电热远红外辐射器所需电阻丝的计算 电阻丝的电功率 224dlURP 式中 P 电阻丝的电功率 W U 电源电压 V R 电阻 电阻丝的电阻系数 铁铬铝电阻丝为 0 00014 cm 2 cm 镍铬电阻 丝为 0 000110 cm2 cm l 电阻丝长度 cm d 电阻丝直径 cm 用于辐射器的电阻丝每平方厘米表面积的负担 W 以 3 5W 为宜 故电 功率也等于 P d l W 从而 22 31 Ul 42 常用的铁铬铝电阻丝根据上式算出的参数如表 22 44 电阻丝的参数 表 22 44 参数电阻丝直 径 cm 电阻丝总 长度 cm 绕成内径为 4mm 的长度 cm 电压 V 电阻 电流 A 总功率 W 0 04 1073 31 0 220 120 0 1 84 406 0 06 1314 54 6 220 65 0 3 38 744 0 08 1518 80 5 220 42 3 5 20 1145 0 10 1697 108 1 220 30 3 7 27 1600 0 12 1859 136 6 220 23 0 9 56 2103 注 辐射器钢管的长度为电阻丝绕成内径 4mm 长度的 1 8 2 0 倍 5 电热远红外内部加热法 1 辐射器 用于内部加热的远红外辐射器的构造如图 22 37 所示 在 15mm 1 2 钢管内装电阻丝 用瓷套管并填充氧化镁或石英粉绝缘 管壁外面涂 以远红外涂料 常用型号的主要参数如表 22 45 辐射器的主要参数 表 22 45 长度 mm 外直径 mm 表面辐射面积 m 2 功率 W 电压 V 电阻 2300 21 0 1445 1500 220 32 33 图 22 37 内部加热用的远红外辐射器 1 电极护罩 2 相极 3 零极 4 瓷套管 5 M4 螺杆 6 钢填芯 7 瓷护套 8 内外丝连接头 9 钢管 10 石棉纤维 11 氧化镁 12 电阻丝 13 堵头 2 结构留孔 内部加热法适用于梁 柱结构 在混凝土浇筑前 将直径为 58mm 的钢管 置于梁或柱的中心位置 浇筑后每隔 30min 将钢管旋转一次 待混凝土初凝后 即行拔出 留出管孔如图 22 38 和图 22 39 水平浇筑的构件可分别从两端抽出 芯管 管孔应稍向端部倾斜 以便使游离水泄出 现浇柱在根部处留泄水孔 用于内部加热的辐射器 其作用半径约为 300mm 当构件截面过大时 可用多 根辐射器同时加热 图 22 38 梁留孔示意 1 铁皮套管 2 抽芯管 图 22 39 柱留孔示意 1 抽芯管 2 弯头 3 短横管 3 加热养护 当混凝土浇筑完毕 孔道已经成型 即可在孔道中插入辐射器 接通电源 向混凝土辐射远红外线使混凝土升温 在每个构件内部应设测温点 随时掌握 混凝土温度 必要时可实行间歇送电 当室外平均气温为 10 时 混凝土达到 40 强度标准值的耗电量约为 l00kW h m3 4 施工注意事项 要采用低流动性或半干硬性混凝土 使用减水剂和早强剂 以利于留孔和 尽早获得强度 结构外面必须保温防止热量损失 现浇柱的根部尤须加强保温 防止受冻 6 电热远红外外部加热法 1 辐射器 外部加热用的电热远红外辐射器通常为管式 外壳为 15mm 钢管 钢管 外表面涂以远红外涂料 内置电阻丝作为发热体 电阻丝与钢管之间用氧化镁 填充以保证绝缘 在辐射器两端分别引出电线并设绝
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!