资源描述
第二章 简单线性回归模型2.1(1) 首先分析人均寿命与人均GDP 的数量关系,用Eviews 分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 56.64794 1.960820 28.88992 0.0000X1 0.128360 0.027242 4.711834 0.0001 R-squared 0.526082 Mean dependent var 62.50000Adjusted R-squared 0.502386 S.D. dependent var 10.08889S.E. of regression 7.116881 Akaike info criterion 6.849324Sum squared resid 1013.000 Schwarz criterion 6.948510Log likelihood -73.34257 Hannan-Quinn criter. 6.872689F-statistic 22.20138 Durbin-Watson stat 0.629074Prob(F-statistic) 0.000134 有上可知,关系式为y=56.64794+0.128360x1关于人均寿命与成人识字率的关系,用Eviews 分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 38.79424 3.532079 10.98340 0.0000X2 0.331971 0.046656 7.115308 0.0000 R-squared 0.716825 Mean dependent var 62.50000Adjusted R-squared 0.702666 S.D. dependent var 10.08889S.E. of regression 5.501306 Akaike info criterion 6.334356Sum squared resid 605.2873 Schwarz criterion 6.433542Log likelihood -67.67792 Hannan-Quinn criter. 6.357721F-statistic 50.62761 Durbin-Watson stat 1.846406Prob(F-statistic) 0.000001 由上可知,关系式为y=38.79424+0.331971x2关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews 分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 31.79956 6.536434 4.864971 0.0001X3 0.387276 0.080260 4.825285 0.0001 R-squared 0.537929 Mean dependent var 62.50000Adjusted R-squared 0.514825 S.D. dependent var 10.08889S.E. of regression 7.027364 Akaike info criterion 6.824009Sum squared resid 987.6770 Schwarz criterion 6.923194Log likelihood -73.06409 Hannan-Quinn criter. 6.847374F-statistic 23.28338 Durbin-Watson stat 0.952555Prob(F-statistic) 0.000103 由上可知,关系式为y=31.79956+0.387276x3(2)关于人均寿命与人均GDP 模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。对于回归系数的t 检验:t (1)=4.711834t0.025(20)=2.086,对斜率系数的显著性检验表明,人均GDP 对人均寿命有显著影响。关于人均寿命与成人识字率模型,由上可知,可决系数为0.716825,说明所建模型整体上对样本数据拟合较好。对于回归系数的t 检验:t (2)=7.115308t0.025(20)=2.086,对斜率系数的显著性检验表明,成人识字率对人均寿命有显著影响。关于人均寿命与一岁儿童疫苗的模型,由上可知,可决系数为0.537929,说明所建模型整体上对样本数据拟合较好。对于回归系数的t 检验:t (3)=4.825285t0.025(20)=2.086,对斜率系数的显著性检验表明,一岁儿童疫苗接种率对人均寿命有显著影响。2.2(1)对于浙江省预算收入与全省生产总值的模型,用Eviews 分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 17:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-StatisticX 0.176124 0.004072 43.25639C -154.3063 39.08196 -3.948274R-squared 0.983702 Mean dependent varAdjusted R-squared 0.983177 S.D. dependent varS.E. of regression 175.2325 Akaike info criterionSum squared resid 951899.7 Schwarz criterionLog likelihood -216.2751 Hannan-Quinn criter.F-statistic 1871.115 Durbin-Watson statProb(F-statistic) 0.000000Prob. 0.0000 0.0004 902.5148 1351.009 13.22880 13.31949 13.25931 0.100021 由上可知,模型的参数:斜率系数0.176124,截距为154.3063关于浙江省财政预算收入与全省生产总值的模型,检验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好。2)对于回归系数的t 检验:t (2)=43.25639t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。用规范形式写出检验结果如下:Y=0.176124X154.3063(0.004072) (39.08196)t= (43.25639) (-3.948274)R2=0.983702 F=1871.115 n=33经济意义是:全省生产总值每增加1亿元,财政预算总收入增加0.176124亿元。(2)当x=32000时,进行点预测,由上可知Y=0.176124X154.3063,代入可得:Y= Y=0.176124*32000154.3063=5481.6617进行区间预测:x2=(X i X )2=2x (n1)= 7608.0212 x (331)=1852223.473(Xf X) 2=(32000 6000.441)2=675977068.2当Xf=32000时,将相关数据代入计算得到:5481.66172.0395x175.2325x1/33+1852223.473/675977068.2Yf5481.6617+2.0395x175.2325x1/33+1852223.473/675977068.2即Yf 的置信区间为(5481.661764.9649, 5481.6617+64.9649)(3) 对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews 分析结果如下: Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 18:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNX 0.980275 0.034296 28.58268 0.0000C -1.918289 0.268213 -7.152121 0.0000R-squared 0.963442 Mean dependent var 5.573120Adjusted R-squared 0.962263 S.D. dependent var 1.684189S.E. of regression 0.327172 Akaike info criterion 0.662028Sum squared resid 3.318281 Schwarz criterion 0.752726Log likelihood -8.923468 Hannan-Quinn criter. 0.692545F-statistic 816.9699 Durbin-Watson stat 0.096208Prob(F-statistic) 0.000000模型方程为:lnY=0.980275lnX-1.918289由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289关于浙江省财政预算收入与全省生产总值的模型,检验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。2)对于回归系数的t 检验:t (2)=28.58268t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%2.4(1)对建筑面积与建造单位成本模型,用Eviews 分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 12:40Sample: 1 12Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000C 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean dependent var 1619.333Adjusted R-squared 0.941512 S.D. dependent var 131.2252S.E. of regression 31.73600 Akaike info criterion 9.903792Sum squared resid 10071.74 Schwarz criterion 9.984610Log likelihood -57.42275 Hannan-Quinn criter. 9.873871F-statistic 178.0715 Durbin-Watson stat 1.172407Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为:Y=1845.475-64.18400X(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。(3)首先进行点预测,由Y=1845.475-64.18400X 得,当x=4.5,y=1556.647再进行区间估计:由上表可知,x2=(X i X )2=2x (n1)= 1.9894192 x (121)=43.5357(Xf X) 2=(4.5 3.523333) 2=0.95387843当Xf=4.5时,将相关数据代入计算得到:1556.6472.228x 31.73600x1/12+43.5357/0.95387843Yf1556.647+2.228x31.73600x1/12+43.5357/0.95387843即Yf 的置信区间为(1556.647478.1231, 1556.647+478.1231)3.1(1)对百户拥有家用汽车量计量经济模型,用Eviews 分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 11/25/14 Time: 12:38Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.X2 5.996865 1.406058 4.265020 0.0002X3 -0.524027 0.179280 -2.922950 0.0069X4 -2.265680 0.518837 -4.366842 0.0002C 246.8540 51.97500 4.749476 0.0001R-squared 0.666062 Mean dependent var 16.77355Adjusted R-squared 0.628957 S.D. dependent var 8.252535S.E. of regression 5.026889 Akaike info criterion 6.187394Sum squared resid 682.2795 Schwarz criterion 6.372424Log likelihood -91.90460 Hannan-Quinn criter. 6.247709F-statistic 17.95108 Durbin-Watson stat 1.147253Prob(F-statistic) 0.000001得到模型得:Y=246.8540+5.996865X2- 0.524027 X3-2.265680 X4对模型进行检验:1) 可决系数是0.666062,修正的可决系数为0.628957,说明模型对样本拟合较好2) F 检验,F=17.95108F(3,27)=3.65,回归方程显著。3)t 检验,t 统计量分别为4.749476,4.265020,-2.922950,-4.366842,均大于 t (27)=2.0518,所以这些系数都是显著的。依据:1) 可决系数越大,说明拟合程度越好2) F 的值与临界值比较,若大于临界值,则否定原假设,回归方程是显著的;若小于临界值,则接受原假设,回归方程不显著。3) t 的值与临界值比较,若大于临界值,则否定原假设,系数都是显著的;若小于临界值,则接受原假设,系数不显著。(2)经济意义:人均增加万元,百户拥有家用汽车增加5.996865辆,城镇人口比重增加个百分点,百户拥有家用汽车减少0.524027辆,交通工具消费价格指数每上升,百户拥有家用汽车减少2.265680辆。(3)用EViews 分析得:Dependent Variable: YMethod: Least SquaresDate: 12/08/14 Time: 17:28Sample: 1 31Included observations: 31 Variable Coefficient Std. Error t-Statistic Prob. X2 5.135670 1.010270 5.083465 0.0000LNX3 -22.81005 6.771820 -3.368378 0.0023LNX4 -230.8481 49.46791 -4.666624 0.0001C 1148.758 228.2917 5.031974 0.0000 R-squared 0.691952 Mean dependent var 16.77355Adjusted R-squared 0.657725 S.D. dependent var 8.252535S.E. of regression 4.828088 Akaike info criterion 6.106692Sum squared resid 629.3818 Schwarz criterion 6.291723Log likelihood -90.65373 Hannan-Quinn criter. 6.167008F-statistic 20.21624 Durbin-Watson stat 1.150090Prob(F-statistic) 0.000000 模型方程为:Y=5.135670 X2-22.81005 LNX3-230.8481 LNX4+1148.758此分析得出的可决系数为0.6919520.666062,拟合程度得到了提高,可这样改进。3.2()对出口货物总额计量经济模型,用Eviews 分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. X2 0.135474 0.012799 10.58454 0.0000X3 18.85348 9.776181 1.928512 0.0729C -18231.58 8638.216 -2.110573 0.0520 R-squared 0.985838 Mean dependent var 6619.191Adjusted R-squared 0.983950 S.D. dependent var 5767.152S.E. of regression 730.6306 Akaike info criterion 16.17670Sum squared resid 8007316. Schwarz criterion 16.32510Log likelihood -142.5903 Hannan-Quinn criter. 16.19717F-statistic 522.0976 Durbin-Watson stat 1.173432Prob(F-statistic) 0.000000 由上可知,模型为:Y = 0.135474X2 + 18.85348X3 - 18231.58对模型进行检验:1)可决系数是0.985838,修正的可决系数为0.983950,说明模型对样本拟合较好2)F 检验,F=522.0976F(2,15)=4.77,回归方程显著3)t 检验,t 统计量分别为X2的系数对应t 值为10.58454,大于t (15)=2.131,系数是显著的,X3的系数对应t 值为1.928512,小于t (15)=2.131,说明此系数是不显著的。(2)对于对数模型,用Eviews 分析结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. LNX2 1.564221 0.088988 17.57789 0.0000LNX3 1.760695 0.682115 2.581229 0.0209C -20.52048 5.432487 -3.777363 0.0018 R-squared 0.986295 Mean dependent var 8.400112Adjusted R-squared 0.984467 S.D. dependent var 0.941530S.E. of regression 0.117343 Akaike info criterion -1.296424Sum squared resid 0.206540 Schwarz criterion -1.148029Log likelihood 14.66782 Hannan-Quinn criter. -1.275962F-statistic 539.7364 Durbin-Watson stat 0.686656Prob(F-statistic) 0.000000 由上可知,模型为:LNY=-20.52048+1.564221 LNX2+1.760695 LNX3对模型进行检验:1)可决系数是0.986295,修正的可决系数为0.984467,说明模型对样本拟合较好。2)F 检验,F=539.7364 F(2,15)=4.77,回归方程显著。3)t 检验,t 统计量分别为-3.777363,17.57789,2.581229,均大于t (15)=2.131,所以这些系数都是显著的。(3)(1)式中的经济意义:工业增加1亿元,出口货物总额增加0.135474亿元,人民币汇率增加1,出口货物总额增加18.85348亿元。(2)式中的经济意义:工业增加额每增加1%,出口货物总额增加1.564221%,人民币汇率每增加1%,出口货物总额增加1.760695%3.3(1)对家庭书刊消费对家庭月平均收入和户主受教育年数计量模型,由Eviews 分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:30Sample: 1 18Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. X 0.086450 0.029363 2.944186 0.0101T 52.37031 5.202167 10.06702 0.0000C -50.01638 49.46026 -1.011244 0.3279 R-squared 0.951235 Mean dependent var 755.1222Adjusted R-squared 0.944732 S.D. dependent var 258.7206S.E. of regression 60.82273 Akaike info criterion 11.20482Sum squared resid 55491.07 Schwarz criterionLog likelihood -97.84334 Hannan-Quinn criter.F-statistic 146.2974 Durbin-Watson statProb(F-statistic) 0.000000模型为:Y = 0.086450X + 52.37031T-50.0163811.35321 11.22528 2.605783对模型进行检验:1)可决系数是0.951235,修正的可决系数为0.944732,说明模型对样本拟合较好。2)F 检验,F=539.7364 F(2,15)=4.77,回归方程显著。3)t 检验,t 统计量分别为2.944186,10.06702,均大于t (15)=2.131,所以这些系数都是显著的。经济意义:家庭月平均收入增加1元,家庭书刊年消费支出增加0.086450元,户主受教育年数增加1年,家庭书刊年消费支出增加52.37031元。(2)用Eviews 分析:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 22:30Sample: 1 18Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. T 63.01676 4.548581 13.85416 0.0000C -11.58171 58.02290 -0.199606 0.8443 R-squared 0.923054 Mean dependent var 755.1222Adjusted R-squared 0.918245 S.D. dependent var 258.7206S.E. of regression 73.97565 Akaike info criterion 11.54979Sum squared resid 87558.36 Schwarz criterion 11.64872Log likelihood -101.9481 Hannan-Quinn criter. 11.56343F-statistic 191.9377 Durbin-Watson stat 2.134043Prob(F-statistic) 0.000000 Dependent Variable: XMethod: Least SquaresDate: 12/01/14 Time: 22:34Sample: 1 18Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob.T 123.1516 31.84150 3.867644 0.0014C 444.5888 406.1786 1.094565 0.2899 R-squared 0.483182 Mean dependent var 1942.933Adjusted R-squared 0.450881 S.D. dependent var 698.8325S.E. of regression 517.8529 Akaike info criterion 15.44170Sum squared resid 4290746. Schwarz criterion 15.54063Log likelihood -136.9753 Hannan-Quinn criter. 15.45534F-statistic 14.95867 Durbin-Watson stat 1.052251Prob(F-statistic) 0.001364 以上分别是y 与T ,X 与T 的一元回归模型分别是:Y = 63.01676T - 11.58171X = 123.1516T + 444.5888(3)对残差进行模型分析,用Eviews 分析结果如下:Dependent Variable: E1Method: Least SquaresDate: 12/03/14 Time: 20:39Sample: 1 18Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. E2 0.086450 0.028431 3.040742 0.0078C 3.96E-14 13.88083 2.85E-15 1.0000 R-squared 0.366239 Mean dependent var 2.30E-14Adjusted R-squared 0.326629 S.D. dependent var 71.76693S.E. of regression 58.89136 Akaike info criterion 11.09370Sum squared resid 55491.07 Schwarz criterion 11.19264Log likelihood -97.84334 Hannan-Quinn criter. 11.10735F-statistic 9.246111 Durbin-Watson stat 2.605783Prob(F-statistic) 0.007788 模型为:E 1 = 0.086450E2 + 3.96e-14参数:斜率系数为0.086450,截距为3.96e-14(3)由上可知,2与2的系数是一样的。回归系数与被解释变量的残差系数是一样的,它们的变化规律是一致的。3.6(1)预期的符号是X 1,X 2,X 3,X 4,X 5的符号为正,X 6的符号为负(2)根据Eviews 分析得到数据如下:Dependent Variable: YMethod: Least SquaresDate: 12/04/14 Time: 13:24Sample: 1994 2011Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. X2 0.001382 0.001102 1.254330 0.2336X3 0.001942 0.003960 0.490501 0.6326X4 -3.579090 3.559949 -1.005377 0.3346X5 0.004791 0.005034 0.951671 0.3600X6 0.045542 0.095552 0.476621 0.6422C -13.77732 15.73366 -0.875659 0.3984 R-squared 0.994869 Mean dependent var 12.76667Adjusted R-squared 0.992731 S.D. dependent var 9.746631S.E. of regression 0.830963 Akaike info criterion 2.728738Sum squared resid 8.285993 Schwarz criterion 3.025529Log likelihood -18.55865 Hannan-Quinn criter. 2.769662F-statistic 465.3617 Durbin-Watson stat 1.553294Prob(F-statistic) 0.000000 与预期不相符。评价:1) 可决系数为0.994869,数据相当大,可以认为拟合程度很好。2) F 检验,F=465.3617F(5.12)=3,89,回归方程显著3) T 检验,X 1,X 2,X 3,X 4,X 5,X 6 系数对应的t 值分别为:1.254330,0.490501,-1.005377,0.951671,0.476621,均小于t (12)=2.179,所以所得系数都是不显著的。(3)根据Eviews 分析得到数据如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 11:12Sample: 1994 2011Included observations: 18Variable Coefficient Std. Error t-StatisticX5 0.001032 2.20E-05 46.79946X6 -0.054965 0.031184 -1.762581C 4.205481 3.335602 1.260786 Prob. 0.0000 0.0983 0.2266R-squared 0.993601 Mean dependent var 12.76667Adjusted R-squared 0.992748 S.D. dependent var 9.746631S.E. of regression 0.830018 Akaike info criterion 2.616274Sum squared resid 10.33396 Schwarz criterion 2.764669Log likelihood -20.54646 Hannan-Quinn criter. 2.636736F-statistic 1164.567 Durbin-Watson stat 1.341880Prob(F-statistic) 0.000000 得到模型的方程为:Y=0.001032 X5-0.054965 X6+4.205481评价:1) 可决系数为0.993601,数据相当大,可以认为拟合程度很好。2) F 检验,F=1164.567F(5.12)=3,89,回归方程显著3) T 检验,X 5 系数对应的t 值为46.79946,大于t (12)=2.179,所以系数是显著的,即人均GDP 对年底存款余额有显著影响。 X 6 系数对应的t 值为-1.762581,小于t(12)=2.179,所以系数是不显著的。4.3(1)根据Eviews 分析得到数据如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/05/14 Time: 11:39Sample: 1985 2011Included observations: 27 Variable Coefficient Std. Error t-Statistic Prob. LNGDP 1.338533 0.088610 15.10582 0.0000LNCPI -0.421791 0.233295 -1.807975 0.0832C -3.111486 0.463010 -6.720126 0.0000 R-squared 0.988051 Mean dependent var 9.484710Adjusted R-squared 0.987055 S.D. dependent var 1.425517S.E. of regression 0.162189 Akaike info criterion -0.695670Sum squared resid 0.631326 Schwarz criterion -0.551689Log likelihood 12.39155 Hannan-Quinn criter. -0.652857F-statistic 992.2582 Durbin-Watson stat 0.522613Prob(F-statistic) 0.000000 得到的模型方程为:LNY=1.338533 LNGDPt -0.421791 LNCPIt -3.111486(2) 该模型的可决系数为0.988051,可决系数很高,F 检验值为992.2582,明显显著。但当=0.05时,t (24)=2.064,LNCPI 的系数不显著,可能存在多重共线性。 得到相关系数矩阵如下:LNGDP , LNCPI 之间的相关系数很高,证实确实存在多重共线性。(3)由Eviews 得:a )Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 14:41Sample: 1985 2011Included observations: 27Variable Coefficient Std. Error t-Statistic Prob. LNGDP 1.185739 0.027822 42.61933 0.0000C -3.750670 0.312255 -12.01156 0.0000 R-squared 0.986423 Mean dependent var 9.484710Adjusted R-squared 0.985880 S.D. dependent var 1.425517S.E. of regression 0.169389 Akaike info criterion -0.642056Sum squared resid 0.717312 Schwarz criterion -0.546068Log likelihood 10.66776 Hannan-Quinn criter. -0.613514F-statistic 1816.407 Durbin-Watson stat 0.471111Prob(F-statistic) 0.000000 b)Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 14:41Sample: 1985 2011Included observations: 27 Variable Coefficient Std. Error t-Statistic Prob. LNCPI 2.939295 0.222756 13.19511 0.0000C -6.854535 1.242243 -5.517871 0.0000 R-squared 0.874442 Mean dependent var 9.484710Adjusted R-squared 0.869419 S.D. dependent var 1.425517S.E. of regression 0.515124 Akaike info criterion 1.582368Sum squared resid 6.633810 Schwarz criterion 1.678356Log likelihood -19.36196 Hannan-Quinn criter. 1.610910F-statistic 174.1108 Durbin-Watson stat 0.137042Prob(F-statistic) 0.000000 c)Dependent Variable: LNGDPMethod: Least SquaresDate: 12/05/14 Time: 11:11Sample: 1985 2011Included observations: 27 Variable Coefficient Std. Error t-Statistic Prob. LNCPI 2.511022 0.158302 15.86227 0.0000C -2.796381 0.882798 -3.167634 0.0040 R-squared 0.909621 Mean dependent var 11.16214Adjusted R-squared 0.906005 S.D. dependent var 1.194029S.E. of regression 0.366072 Akaike info criterion 0.899213Sum squared resid 3.350216 Schwarz criterion 0.995201Log likelihood -10.13938 Hannan-Quinn criter. 0.927755F-statistic 251.6117 Durbin-Watson stat 0.099623Prob(F-statistic) 0.000000 得到的回归方程分别为1)LNY=1.185739 LNGDPt -3.7506702)LNY=2.939295 LNCPIt -6.8545353)LNGDP t=2.511022 LNCPIt -2.796381对多重共线性的认识:单方程拟合效果都很好,回归系数显著,判定系数较高,GDP 和CPI 对进口的显著的单一影响,在这两个变量同时引入模型时影响方向发生了改变,这只有通过相关系数的分析才能发现。(4)建议:如果仅仅是作预测,可以不在意这种多重共线性,但如果是进行结构分析,还是应该引起注意的。4.4(1)按照设计的理论模型,由Eviews 分析得:Dependent Variable: CZSRMethod: Least SquaresDate: 12/03/14 Time: 11:40Sample: 1985 2011Included observations: 27Variable Coefficient Std. Error t-StatisticCZZC 0.090114 0.044367 2.031129GDP -0.025334 0.005069 -4.998036SSZE 1.176894 0.062162 18.93271C -221.8540 130.6532 -1.698038R-squared 0.999857 Mean dependent varAdjusted R-squared 0.999838 S.D. dependent varS.E. of regression 353.0540 Akaike info criterionSum squared resid 2866884. Schwarz criterionLog likelihood -194.5455 Hannan-Quinn criter.F-statistic 53493.93 Durbin-Watson statProb(F-statistic) 0.000000Prob. 0.0540 0.0000 0.0000 0.1030 22572.56 27739.49 14.70707 14.89905 14.76416 1.458128从回归结果可见,可决系数为0.999857,校正的可决系数为0.999838,模型拟合的很好。F 的统计量为53493.93,说明在=0.05,水平下,回归方程回归方程整体上是显著的。但是t 检验结果表明,国内生产总值对财政收入的影响显著,但回归系数的符号为负,与实际不符合。由此可得知,该方程可能存在多重共线性。(2)得到相关系数矩阵如下:由上表可知,CZZC 与GDP ,CZZC 与SSZE ,GDP 与SSZE 之间的相关系数都非常高,说明确实存在多重共线性。方差扩大因子均大于10,存在严重多重共线性。并且通过以上分析,两两被解释变量之间相关性都很高。(4)解决方式:分别作出财政收入与财政支出、国内生产总值、税收总额之间的一元回归。5.2(1)用图形法检验绘制e 2的散点图,用Eviews 分析如下:由上图可知,模型可能存在异方差, Goldfeld-Quanadt 检验1)定义区间为1-7时,由软件分析得:Dependent Variable: YMethod: Least SquaresDate: 12/10/14 Time: 14:52Sample: 1 7Included observations: 7Variable Coefficient St
展开阅读全文