大学物理课后答案.doc

上传人:wux****ua 文档编号:9443343 上传时间:2020-04-05 格式:DOC 页数:52 大小:1.70MB
返回 下载 相关 举报
大学物理课后答案.doc_第1页
第1页 / 共52页
大学物理课后答案.doc_第2页
第2页 / 共52页
大学物理课后答案.doc_第3页
第3页 / 共52页
点击查看更多>>
资源描述
第十一章恒定磁场111两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R 2r,螺线管通过的电流相同为I,螺线管中的磁感强度大小满足()(A) (B) (C) (D)分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C).112一个半径为r的半球面如图放在均匀磁场中,通过半球面的磁通量为()(A)(B) (C) (D) 题 11-2 图分析与解作半径为r 的圆S与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S的磁通量;因而正确答案为(D)113下列说法正确的是()(A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B)114在图()和()中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在()图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则()(A) ,(B) ,(C) ,(D) ,题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布因而正确答案为(C)115半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I,磁介质的相对磁导率为 (1),则磁介质内的磁化强度为()(A)(B) (C) (D) 分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M(1)H 求得磁介质内的磁化强度,因而正确答案为(B)116北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速.分析一个电子绕存储环近似以光速运动时,对电流的贡献为,因而由,可解出环中的电子数.解通过分析结果可得环中的电子数117已知铜的摩尔质量M 63.75 mol1 ,密度 8.9 g cm3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度 ,求此时铜线内电子的漂移速率vd ;(2) 在室温下电子热运动的平均速率是电子漂移速率vd的多少倍?分析一个铜原子的质量,其中NA 为阿伏伽德罗常数,由铜的密度 可以推算出铜的原子数密度根据假设,每个铜原子贡献出一个自由电子,其电荷为e,电流密度 从而可解得电子的漂移速率vd将电子气视为理想气体,根据气体动理论,电子热运动的平均速率其中k 为玻耳兹曼常量,me 为电子质量从而可解得电子的平均速率与漂移速率的关系解(1) 铜导线单位体积的原子数为电流密度为jm 时铜线内电子的漂移速率(2) 室温下(T300 )电子热运动的平均速率与电子漂移速率之比为室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子实验证明电信号是通过电磁波以光速传递的118有两个同轴导体圆柱面,它们的长度均为20 m,内圆柱面的半径为3.0 mm,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 A电流沿径向流过,求通过半径为6.0 mm的圆柱面上的电流密度题 11-8 图分析如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得解由分析可知,在半径r 6.0 mm的圆柱面上的电流密度119如图所示,已知地球北极地磁场磁感强度B 的大小为6.0105T如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解设赤道电流为I,则由教材第114节例2 知,圆电流轴线上北极点的磁感强度因此赤道上的等效圆电流为由于在地球地磁场的 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反题 11-9 图1110如图所示,有两根导线沿半径方向接触铁环的a、b 两点,并与很远处的电源相接.求环心O的磁感强度题 11-10 图分析根据叠加原理,点O 的磁感强度可视作由ef、be、fa三段直线以及acb、adb两段圆弧电流共同激发由于电源距环较远,而be、fa两段直线的延长线通过点O,由于,由毕奥萨伐尔定律知流过圆弧的电流I1 、I2的方向如图所示,两圆弧在点O 激发的磁场分别为,其中l1 、l2 分别是圆弧acb、adb的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb、adb又构成并联电路,故有将叠加可得点O 的磁感强度B解由上述分析可知,点O 的合磁感强度1111如图所示,几种载流导线在平面内分布,电流均为I,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度.解() 长直电流对点O 而言,有,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有B0 的方向垂直纸面向外() 将载流导线看作圆电流和长直电流,由叠加原理可得B0 的方向垂直纸面向里(c) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得B0 的方向垂直纸面向外1112载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O的磁感强度B 题 11-12 图分析由教材114 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度,其中为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度,磁感强度的方向依照右手定则确定.点O的磁感强度可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加.解根据磁场的叠加在图()中,在图()中,在图(c)中,1113如图(a)所示,载流长直导线的电流为I,试求通过矩形面积的磁通量题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量BS为此,可在矩形平面上取一矩形面元dS ldx,如图()所示,载流长直导线的磁场穿过该面元的磁通量为矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量1114已知10 mm2 裸铜线允许通过50 A 电流而不会使导线过热电流在导线横截面上均匀分布求导线内、外磁感强度的分布.题 11-14 图分析可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B大小相等、方向与电流成右手螺旋关系为此,可利用安培环路定理,求出导线表面的磁感强度解围绕轴线取同心圆为环路L,取其绕向与电流成右手螺旋关系,根据安培环路定理,有在导线内r R, ,因而在导线外r R,因而磁感强度分布曲线如图所示1115有一同轴电缆,其尺寸如图()所示两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑试计算以下各处的磁感强度:(1) r R1 ;(2) R1 r R2 ;(3) R2 r R3 ;(4) r R3 画出B r 图线题 11-15 图分析同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, ,利用安培环路定理,可解得各区域的磁感强度解由上述分析得r R1 R1 r R2R2 r R3 r R3磁感强度B(r)的分布曲线如图()1116如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上求通入电流I 后,环内外磁场的分布题 11-16 图分析根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而依照安培环路定理,可以解得螺线管内磁感强度的分布解依照上述分析,有r R1 R2 r R1 r R2 在螺线管内磁感强度B 沿圆周,与电流成右手螺旋若 和R2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径,则环内的磁感强度近似为1117电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量题 11-17 图分析由题1114 可得导线内部距轴线为r 处的磁感强度在剖面上磁感强度分布不均匀,因此,需从磁通量的定义来求解沿轴线方向在剖面上取面元S lr,考虑到面元上各点B 相同,故穿过面元的磁通量BS,通过积分,可得单位长度导线内的磁通量解由分析可得单位长度导线内的磁通量1118已知地面上空某处地磁场的磁感强度,方向向北若宇宙射线中有一速率 的质子,垂直地通过该处求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较题 11-18 图解(1) 依照可知洛伦兹力的方向为的方向,如图所示(2) 因,质子所受的洛伦兹力在地球表面质子所受的万有引力因而,有,即质子所受的洛伦兹力远大于重力1119霍尔效应可用来测量血流的速度,其原理如图所示在动脉血管两侧分别安装电极并加以磁场设血管直径为d2.0 mm,磁场为B0.080 T,毫伏表测出血管上下两端的电压为UH0.10 mV,血流的流速为多大?题 11-19 图分析血流稳定时,有由上式可以解得血流的速度解依照分析1120带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 ,求此质子的动量和动能解根据带电粒子回转半径与粒子运动速率的关系有1121从太阳射来的速度为0.80108 m/ 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 107,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 105,其轨道半径又为多少?解由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径地磁北极附近的回转半径1122如图()所示,一根长直导线载有电流I1 30 A,矩形回路载有电流I2 20 A试计算作用在回路上的合力已知d 1.0 cm,b 8.0 cm,l 0.12 m题 11-22图分析矩形上、下两段导线受安培力F1 和F2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F3 和F4 大小不同,且方向相反,因此线框所受的力为这两个力的合力解由分析可知,线框所受总的安培力F为左、右两边安培力F3 和F4 之矢量和,如图()所示,它们的大小分别为故合力的大小为合力的方向朝左,指向直导线1123一直流变电站将电压为500kV的直流电,通过两条截面不计的平行输电线输向远方已知两输电导线间单位长度的电容为3.01011Fm1 ,若导线间的静电力与安培力正好抵消求:(1) 通过输电线的电流;(2) 输送的功率分析当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定若两导线间距离为d,一导线在另一导线位置激发的磁感强度,导线单位长度所受安培力的大小将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷CU,一导线在另一导线位置所激发的电场强度,两导线间单位长度所受的静电吸引力依照题意,导线间的静电力和安培力正好抵消,即从中可解得输电线中的电流解(1) 由分析知单位长度导线所受的安培力和静电力分别为由可得解得(2) 输出功率1124在氢原子中,设电子以轨道角动量绕质子作圆周运动,其半径为求质子所在处的磁感强度h 为普朗克常量,其值为分析根据电子绕核运动的角动量可求得电子绕核运动的速率v如认为电子绕核作圆周运动,其等效圆电流在圆心处,即质子所在处的磁感强度为解由分析可得,电子绕核运动的速率其等效圆电流该圆电流在圆心处产生的磁感强度1125如图a所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为r(r 1),导体的磁化可以忽略不计沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流题 11-25 图分析电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆选取任一同心圆为积分路径,应有,利用安培环路定理求出环路内的传导电流,并由,可求出磁感强度和磁化强度再由磁化电流的电流面密度与磁化强度的关系求出磁化电流解(1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有对r R1得忽略导体的磁化(即导体相对磁导率r =1),有,对R2 r R1 得填充的磁介质相对磁导率为r ,有,对R3 r R2得同样忽略导体的磁化,有,对r R3得,(2) 由,磁介质内、外表面磁化电流的大小为对抗磁质(),在磁介质内表面(r R1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r R2 ),磁化电流与外导体传导电流方向相反顺磁质的情况与抗磁质相反H(r)和B(r)分布曲线分别如图()和(c)所示第十二章电磁感应电磁场和电磁波121一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A) 线圈中无感应电流(B) 线圈中感应电流为顺时针方向(C) 线圈中感应电流为逆时针方向(D) 线圈中感应电流方向无法确定题 12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定因而正确答案为(B)122 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A) 铜环中有感应电流,木环中无感应电流(B) 铜环中有感应电流,木环中有感应电流(C) 铜环中感应电动势大,木环中感应电动势小(D) 铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流因而正确答案为(A)123有两个线圈,线圈1对线圈2 的互感系数为M21 ,而线圈2 对线圈1的互感系数为M12 若它们分别流过i1 和i2 的变化电流且,并设由i2变化在线圈1 中产生的互感电动势为12 ,由i1 变化在线圈2 中产生的互感电动势为21 ,下述论断正确的是()(A) ,(B) ,(C), (D) ,分析与解教材中已经证明M21 M12 ,电磁感应定律;因而正确答案为(D)124对位移电流,下述说法正确的是()(A) 位移电流的实质是变化的电场(B) 位移电流和传导电流一样是定向运动的电荷(C) 位移电流服从传导电流遵循的所有定律(D) 位移电流的磁效应不服从安培环路定理分析与解位移电流的实质是变化的电场变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律因而正确答案为(A)125下列概念正确的是()(A) 感应电场是保守场(B) 感应电场的电场线是一组闭合曲线(C) ,因而线圈的自感系数与回路的电流成反比(D) ,回路的磁通量越大,回路的自感系数也一定大分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线因而正确答案为(B)126一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,式中的单位为Wb,t的单位为s,求在时,线圈中的感应电动势分析由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链解线圈中总的感应电动势当 时,127 载流长直导线中的电流以的变化率增长.若有一边长为d的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律,来求解.由于回路处在非均匀磁场中,磁通量就需用来计算. 为了积分的需要,建立如图所示的坐标系.由于B仅与x有关,即B=B(x),故取一个平行于长直导线的宽为dx、长为d的面元dS,如图中阴影部分所示,则dS=ddx,所以,总磁通量可通过线积分求得(若取面元dS=dxdy,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式求解.解1 穿过面元dS的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有 解2 当两长直导线有电流I通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为当电流以变化时,线圈中的互感电动势为题 12-7 图128有一测量磁感强度的线圈,其截面积S4.0 cm2 、匝数N160 匝、电阻R50线圈与一内阻Ri30的冲击电流计相连若开始时,线圈的平面与均匀磁场的磁感强度B相垂直,然后线圈的平面很快地转到与B的方向平行此时从冲击电流计中测得电荷值问此均匀磁场的磁感强度B 的值为多少?分析在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关工程中常通过感应电量的测定来确定磁场的强弱解在线圈转过90角时,通过线圈平面磁通量的变化量为因此,流过导体截面的电量为则 129如图所示,一长直导线中通有I5.0 A 的电流,在距导线9.0 cm处,放一面积为0.10 cm2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的今在1.0 102 s 内把此线圈移至距长直导线10.0 cm 处求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0102,求通过线圈横截面的感应电荷题 12-9 图分析虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用来计算线圈在始、末两个位置的磁链解 (1) 在始、末状态,通过线圈的磁链分别为,则线圈中的平均感应电动势为电动势的指向为顺时针方向(2) 通过线圈导线横截面的感应电荷为1210如图()所示,把一半径为R 的半圆形导线OP 置于磁感强度为B的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解在用后一种方法求解时,应注意导体上任一导线元l 上的动生电动势.在一般情况下,上述各量可能是l 所在位置的函数矢量(v B)的方向就是导线中电势升高的方向解1如图()所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x,则即由于静止的 形导轨上的电动势为零,则E 2RvB式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高解2建立如图(c)所示的坐标系,在导体上任意处取导体元l,则由矢量(v B)的指向可知,端点P 的电势较高 解3连接OP 使导线构成一个闭合回路由于磁场是均匀的,在任意时刻,穿过回路的磁通量常数.由法拉第电磁感应定律可知,E 0又因 E EOP EPO即 EOP EPO 2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势上述求解方法是叠加思想的逆运用,即补偿的方法1211长为L的铜棒,以距端点r 处为支点,以角速率绕通过支点且垂直于铜棒的轴转动.设磁感强度为B的均匀磁场与轴平行,求棒两端的电势差题 12-11 图分析应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向)本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图()所示而EOA 和EOB 则可以直接利用第122 节例1 给出的结果解1如图()所示,在棒上距点O 为l 处取导体元l,则因此棒两端的电势差为当L 2r 时,端点A 处的电势较高解2将AB 棒上的电动势看作是OA 棒和OB 棒上电动势的代数和,如图()所示其中,则1212如图所示,长为L 的导体棒OP,处于均匀磁场中,并绕OO轴以角速度旋转,棒与转轴间夹角恒为,磁感强度B 与转轴平行求OP 棒在图示位置处的电动势题 12-12 图分析如前所述,本题既可以用法拉第电磁感应定律 计算(此时必须构造一个包含OP导体在内的闭合回路, 如直角三角形导体回路OPQO),也可用来计算由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的解1由上分析,得 由矢量的方向可知端点P 的电势较高解2设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量为零,则回路的总电动势显然,EQO 0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效1213如图()所示,金属杆AB 以匀速平行于一长直导线移动,此导线通有电流I 40 A求杆中的感应电动势,杆的哪一端电势较高?题 12-13 图分析本题可用两种方法求解方法1:用公式求解,建立图(a)所示的坐标系,所取导体元,该处的磁感强度方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路为此可设想杆AB在一个静止的导轨上滑动,如图()所示设时刻t,杆AB 距导轨下端CD的距离为y,先用公式求得穿过该回路的磁通量,再代入公式,即可求得回路的电动势,亦即本题杆中的电动势解1根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A,故点A 电势较高解2设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为x、长为y 的面元S,则穿过面元的磁通量为穿过回路的磁通量为回路的电动势为由于静止的导轨上电动势为零,所以式中负号说明回路电动势方向为逆时针,对AB导体来说,电动势方向应由B 指向A,故点A电势较高1214如图()所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向题 12 -14 图分析本题亦可用两种方法求解其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和如图()所示,导体eh 段和fg 段上的电动势为零此两段导体上处处满足,因而线框中的总电动势为其等效电路如图()所示(2)用公式求解,式中是线框运动至任意位置处时,穿过线框的磁通量为此设时刻t 时,线框左边距导线的距离为,如图(c)所示,显然是时间t 的函数,且有在求得线框在任意位置处的电动势E()后,再令d,即可得线框在题目所给位置处的电动势解1根据分析,线框中的电动势为由Eef Ehg 可知,线框中的电动势方向为efgh解2设顺时针方向为线框回路的正向根据分析,在任意位置处,穿过线框的磁通量为相应电动势为令d,得线框在图示位置处的电动势为由E 0 可知,线框中电动势方向为顺时针方向1215在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行如图()所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率为常量试证:棒上感应电动势的大小为题 12-15 图分析变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势此外,还可连接OP、OQ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP、OQ 沿半径方向,与通过该处的感生电场强度Ek 处处垂直,故,OP、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势证1由电磁感应定律,在r R 区域,解得该区域内感生电场强度的大小设PQ 上线元x 处,Ek的方向如图(b)所示,则金属杆PQ 上的电动势为证2由法拉第电磁感应定律,有讨论假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?1216截面积为长方形的环形均匀密绕螺绕环,其尺寸如图()所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L题 12-16 图分析如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量求自感L 的方法有两种:1设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式计算L2让回路中通以变化率已知的电流,测出回路中的感应电动势EL ,由公式计算L式中EL 和都较容易通过实验测定,所以此方法一般适合于工程中此外,还可通过计算能量的方法求解解用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图()所示,由安培环路定理可求得在R1 r R2 范围内的磁场分布为由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为则若管中充满均匀同种磁介质,其相对磁导率为r ,则自感将增大r倍1217如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S1 和S2 ,磁导率分别为1 和2 ,管长为,匝数为N,求螺线管的自感(设管的截面很小)题 12-17 图分析本题求解时应注意磁介质的存在对磁场的影响在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为1 B0 和2 B0 通过线圈横截面的总磁通量是截面积分别为S1 和S2 的两部分磁通量之和由自感的定义可解得结果解设有电流I 通过螺线管,则管中两介质中磁感强度分别为,通过N匝回路的磁链为则自感1218有两根半径均为a 的平行长直导线,它们中心距离为d试求长为l的一对导线的自感(导线内部的磁通量可略去不计)题 12-18 图分析两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分设在矩形回路中通有逆时针方向电流I,然后计算图中阴影部分(宽为d、长为l)的磁通量该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加解在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为穿过图中阴影部分的磁通量为则长为l 的一对导线的自感为如导线内部磁通量不能忽略,则一对导线的自感为L1 称为外自感,即本题已求出的L,L2 称为一根导线的内自感长为l的导线的内自感,有兴趣的读者可自行求解1219如图所示,在一柱形纸筒上绕有两组相同线圈AB 和AB,每个线圈的自感均为L,求:(1) A 和A相接时,B 和B间的自感L1 ;(2) A和B 相接时,A 和B间的自感L2 题 12-19 图分析无论线圈AB 和AB作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为,则穿过两线圈回路的磁通量为2;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为22,“ ”取决于电流在两组线圈中的流向是相同或是相反解(1) 当A 和A连接时,AB 和AB线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为,故L1 0(2) 当A和B 连接时,AB 和AB线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为,故本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈1220如图所示,一面积为4.0 cm2 共50 匝的小圆形线圈A,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面设线圈A 内各点的磁感强度可看作是相同的求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为50 A1 时,线圈A 中感应电动势的大小和方向题 12-20 图 分析设回路中通有电流I1 ,穿过回路的磁通量为21 ,则互感M M21 21/I1 ;也可设回路通有电流I2 ,穿过回路的磁通量为12 ,则 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量BS反之,如设线圈A 通有电流I,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径解(1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度,穿过小线圈A 的磁链近似为则两线圈的互感为(2)线圈A中感应电动势的大小为互感电动势的方向和线圈B 中的电流方向相同1221如图所示,两同轴单匝线圈A、C 的半径分别为R 和r,两线圈相距为d若r很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的求两线圈的互感若线圈C 的匝数为N 匝,则互感又为多少?题 12-21 图解设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍1222如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm2 ,沿环每厘米绕有100 匝线圈,通有电流I1 4.0 10 2 A,在环上再绕一线圈C,共10 匝,其电阻为0.10 ,今将开关 突然开启,测得线圈C 中的感应电荷为2.0 10 3 C求:当螺绕环中通有电流I1 时,铁磁质中的B 和铁磁质的相对磁导率r题 12-22 图分析本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度线圈C 的磁通变化是与环形螺线管中的电流变化相联系的解当螺绕环中通以电流I1 时,在环内产生的磁感强度则通过线圈C 的磁链为设断开电源过程中,通过C 的感应电荷为qC ,则有由此得相对磁导率1223一个直径为0.01 m,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 求:(1) 如把线圈接到电动势E 2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L(已知或很容易求得),则该回路通有电流I 时所储存的磁能,通常称为自感磁能方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即,式中为磁场能量密度,积分遍及磁场存在的空间由于,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B的分布上述两种方法还为我们提供了计算自感的另一种途径,即运用求解L解(1) 密绕长直螺线管在忽略端部效应时,其自感,电流稳定后,线圈中电流,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度 处处相等,(2) 自感为L,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律,当电流稳定后,其最大值按题意,则,将其代入中,得1224未来可能会利用超导线圈中持续大电流建立的磁场来储存能量要储存1 kWh的能量,利用1.0的磁场,需要多大体积的磁场? 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大?解由磁感强度与磁场能量间的关系可得所需线圈的自感系数为1225中子星表面的磁场估计为108,该处的磁能密度有多大?解由磁场能量密度1226在真空中,若一均匀电场中的电场能量密度与一 0.50 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解 ,按题意,当时,则1227设有半径R0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d0.50 cm,以恒定电流I2.0 A对电容器充电求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的)分析尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场从这个意义来说,变化电场可视为一种“广义电流”,即位移电流在本题中,导线内存在着传导电流Ic,而在平行板电容器间存在着位移电流Id,它们使电路中的电流连续,即解忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流,由此得位移电流密度的大小第十三章几何光学简介13-1 如图所示,一储油圆桶,底面直径与桶高均为d.当桶内无油时,从某点A恰能看到桶底边缘上的某点B.当桶内油的深度等于桶高一半时,在A点沿AB方向看去,看到桶底上的C点,C、B相距由此可得油的折射率以及光在油中传播的速度为()(A) (B) (C) (D) 分析与解 如图所示,C点发出的光线经O点折射后射向A点,则由折射定律(n为油的折射率,为空气的折射率),可知油的折射率.光在折射率为n的介质中速度,因而可进一步求得光在油中传播的速度.故选(B).题 13-1 图13-2 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8 (B)41.2 (C)97.6 (D)82.4分析与解 本题是一个全反射的应用题.根据水的折射率,光线从空气射入水中时反射光的临界角,其中n=1.33为水的折射率.如图所示,当光线以90的最大入射角射入水中时,折射角为r,故所有射入水中的光线的折射角均小于r,根据空间旋转对称,水面上所有的景物都落在顶角为的锥面内.故选(C).题 13-2 图13-3 一远视眼的近点在1 m 处,要看清楚眼前10 cm处的物体,应佩戴怎样的眼镜()(A) 焦距为10 cm的凸透镜 (B) 焦距为10 cm的凹透镜(C) 焦距为11 cm的凸透镜 (D) 焦距为11 cm的凹透镜分析与解 根据薄透镜的成像公式,可由物距和像距计算透镜的像方焦距.根据题意,物距=-0.1 m,像距=-1 m,则代入公式可求得像方焦距.像方焦距为正数,故为凸透镜.正确答案为(C)13-4 一平行超声波束入射于水中的平凸有机玻璃透镜的平的一面,球面的曲率半径为10 cm,试求在水中时透镜的焦距.假设超声波在水中的速度为,在有机玻璃中的速度为.分析 薄透镜的像方焦距公式为,弄清公式中各值代表的物理意义即可求解本题.这里分别为透镜前后介质的折射率,由题意透镜前后介质均为水,故;为透镜的折射率;为透镜平的一面的曲率半径,即;为透镜凸的一面的曲率半径,即= - 10 cm.解 由上述分析可得13-5 将一根短金属丝置于焦距为35 cm的会聚透镜的主轴上,离开透镜的光心为50 cm处,如图所示. (1) 试绘出成像光路图;(2)求金属丝的成像位置.分析 (1) 凸透镜的成像图只需画出两条特殊光线就可确定像的位置.为此作出以下两条特殊光线:过光心的入射光线折射后方向不变;过物方焦点的入射光线通过透镜入射后平行于主光轴.(2)在已知透镜像方焦距和物距p时,利用薄透镜的成像公式即可求得像的位置.解 (1)根据分析中所述方法作成像光路图如图所示.(2) 由成像公式可得成像位置为题 13-5 图13-6 一架显微镜的物镜和目镜相距为 20 cm,物镜焦距为 7 mm,目镜的焦距为 5 mm,把物镜和目镜均看做是薄透镜.试求:(1)被观察物到物镜的距离;(2)物镜的横向放大率;(3)显微镜的视角放大率.分析 (1)图示为显微镜的工作原理图.使用显微镜观察物体时,是将物体置于物镜物方焦点外侧附近.调节物镜与目镜的间距d,使物体经物镜放大成实像(显微镜的中间像)在目镜物方焦点附近.由题意,图中d和已知,可以求得中间像到物镜的距离,即物体对物镜的像距.则利用薄透镜成像公式就可求得物体到物镜的距离p.(2)物镜的横向放大率可由公式直接求出.而显微镜的视角放大率由公式计算.其中为物镜像方焦点到目镜物方焦点的距离.解 (1)由分析可知,显微镜的中间像对物镜的距离(像距)为而像方焦距=7 mm,则由薄透镜成像公式可得观察物到物镜的距离为(2)物镜的横向放大率为(3)由分析知,则显微镜的视角放大率题 13-6 图13-7 一天文望远镜,物镜与目镜相距90 cm,放大倍数为 8(即8倍),求物镜和目镜的焦距.分析 望远镜的放大率为,其中和分别为物镜和目镜的像方焦距.而通常物镜的像方焦点和目镜的物方焦点几乎重合,即目镜和物镜的间距为两者焦距之和,而题中已知+=90 cm,由此可求和. 解 由分析可知,又+=90 cm,则得物镜和目镜的像方焦距为
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!