【毕业论文】基于matlab的人脸识别系统设计与仿真(含matlab源程序)

上传人:gbs****77 文档编号:9301212 上传时间:2020-04-04 格式:DOC 页数:43 大小:937.14KB
返回 下载 相关 举报
【毕业论文】基于matlab的人脸识别系统设计与仿真(含matlab源程序)_第1页
第1页 / 共43页
【毕业论文】基于matlab的人脸识别系统设计与仿真(含matlab源程序)_第2页
第2页 / 共43页
【毕业论文】基于matlab的人脸识别系统设计与仿真(含matlab源程序)_第3页
第3页 / 共43页
点击查看更多>>
资源描述
基于 matlab 的人脸识别系统设计与仿真 第一章 绪论 本章提出了本文的研究背景及应用前景 首先阐述了人脸图像 识别意义 然后介绍了人脸图像识别研究中存在的问题 接着介绍 了自动人脸识别系统的一般框架构成 最后简要地介绍了本文的主 要工作和章节结构 1 1 研究背景 自 70 年代以来 随着人工智能技术的兴起 以及人类视觉研究的 进展 人们逐渐对人脸图像的机器识别投入很大的热情 并形成了一 个人脸图像识别研究领域 这一领域除了它的重大理论价值外 也 极具实用价值 在进行人工智能的研究中 人们一直想做的事情就是让机器具 有像人类一样的思考能力 以及识别事物 处理事物的能力 因此 从解剖学 心理学 行为感知学等各个角度来探求人类的思维机制 以及感知事物 处理事物的机制 并努力将这些机制用于实践 如 各种智能机器人的研制 人脸图像的机器识别研究就是在这种背景 下兴起的 因为人们发现许多对于人类而言可以轻易做到的事情 而让机器来实现却很难 如人脸图像的识别 语音识别 自然语言 理解等 如果能够开发出具有像人类一样的机器识别机制 就能够 1 逐步地了解人类是如何存储信息 并进行处理的 从而最终了解人 类的思维机制 同时 进行人脸图像识别研究也具有很大的使用价依 如同人 的指纹一样 人脸也具有唯一性 也可用来鉴别一个人的身份 现 在己有实用的计算机自动指纹识别系统面世 并在安检等部门得到 应用 但还没有通用成熟的人脸自动识别系统出现 人脸图像的自 动识别系统较之指纹识别系统 DNA 鉴定等更具方便性 因为它取 样方便 可以不接触目标就进行识别 从而开发研究的实际意义更 大 并且与指纹图像不同的是 人脸图像受很多因素的干扰 人脸表 情的多样性 以及外在的成像过程中的光照 图像尺寸 旋转 姿势 变化等 使得同一个人 在不同的环境下拍摄所得到的人脸图像不 同 有时更会有很大的差别 给识别带来很大难度 因此在各种干 扰条件下实现人脸图像的识别 也就更具有挑战性 国外对于人脸图像识别的研究较早 现己有实用系统面世 只 是对于成像条件要求较苛刻 应用范围也就较窄 国内也有许多科 研机构从事这方而的研究 并己取得许多成果 1 2 人脸图像识别的应用前景 人脸图像识别除了具有重大的理论价值以及极富挑战性外 还 其有许多潜在的应用前景 利用人脸图像来进行身份验证 可以不 与目标相接触就取得样本图像 而其它的身份验证手段 如指纹 眼睛虹膜等必须通过与目标接触或相当接近来取得样木 在某些场 2 合 这些识别手段就会有不便之处 就从目前和将来来看 可以预测到人脸图像识别将具有广阔的 应用前景 如表 1 1 中所列举就是其中已经实现或逐步完善的应用 表 1 1 人脸识别的应用 应用 优点 存在问题 信信用卡 汽车 驾照 护照以及个人 身份验证等 图像摄取可控 图像分割可控 图像质量好 需要建立庞大的 数据库 嫌疑犯照片匹配 图像质量不统一 多幅图像可用 潜在的巨大图像 库 互联网应用 视频信息价值高 多人参与 存在虚假 银行 储蓄安全 监控效果好 图像分割不可控 图像质量较差 人群监测 图像质量高 可利用摄像图像 图像分割自由 图像质量低 实 时性 1 3 本文研究的问题 本文介绍了人脸图像识别中所应用 MATLAB 对图像进行预处 3 理 应用该工具箱对图像进行经典图像处理 通过实例来应用 matlab 图像处理功能 对某一特定的人脸图像处理 进而应用到人脸识别 系统 本文在总结分析人脸识别系统中几种常用的图像预处理方法 基础上 利用 MATLAB 实现了一个集多种预处理方法于一体的通 用的人脸图像预处理仿真系统 将该系统作为图像预处理模块可嵌 入在人脸识别系统中 并利用灰度图像的直方图比对来实现人脸图 像的识别判定 其中涉及到图像的选取 脸部定位 特征提取 图像处理和识 别几个过程 1 4 识别系统构成 人类似乎具有 与生俱来 的人脸识别能力 赋予计算机同样 的能力是人类的梦想之一 这就是所谓的 人脸识别 系统 假设 我们把照相机 摄像头 扫描仪等看作计算机的 眼睛 数字图像 可以看作计算机观察到的 影像 那么 AFR 赋予计算机根据其所 看到 的人脸图片来判断人物身份的能力 广义的讲 自动人脸识别系统具有如图 1 1 所示的一般框架并 完成相应功能的任务 人脸图像获取 人脸检测 特征提取 人脸识别 4 图 1 1 人脸识别系统一般框架 1 人脸图像的获取 一般来说 图像的获取都是通过摄像头摄取 但摄取的图像可 以是真人 也可以是人脸的图片或者为了相对简单 可以不考虑通 过摄像头来摄取头像 而是直接给定要识别的图像 2 人脸的检测 人脸检测的任务是判断静态图像中是否存在人脸 若存在人脸 给出其在图像中的坐标位置 人脸区域大小等信息 而人脸跟踪则 需要进一步输出所检测到的人脸位置 大小等状态随时间的连续变 化情况 3 特征提取 通过人脸特征点的检测与标定可以确定人脸图像中显著特征点 的位置 如眼睛 眉毛 鼻子 嘴巴等器官 同时还可以得到这些 器官及其面部轮廓的形状信息的描述 根据人脸特征点检测与标定的结果 通过某些运算得到人脸特 征的描述 这些特征包括 全局特征和局部特征 显式特征和统计 特征等 4 基于人脸图像比对的身份识别 即人脸识别 Face Identification 问题 通过将输入人脸图像与人 脸数据库中的所有已知原型人脸图像计算相似度并对其排序来给出 输入人脸的身份信息 这包括两类识别问题 一类是闭集 Close Set 人脸识别问题 即假定输入的人脸一定是人脸库中的某个个体 另 5 一类是开集 Open Set 识别 即首先要对输入人脸是否在已知人脸库 中做出判断 如果是 则给出其身份 5 基于人脸图像比对的身份验证 即人脸确认 Face Verification 问题 系统在输入人脸图像的同时 输入一个用户宣称的该人脸的身份信息 系统要对该输入人脸图像 的身份与宣称的身份是否相符作出判断 1 5 论文的内容及组织 第二章主要介绍人脸识别系统中所用到的仿真软件 Matlab 介 绍了在人脸图像识别过程中所需要的图像处理技术 包括 一些基 本操作 格式转换 图像增强等 并做了一个 Matlab 图像处理功能 的实例 第三章主要始涉三个方面 首先是对人脸识别系统的构成做详 细论述 其次就是对人脸识别过程中的关键环节人脸检测 特征提 取和图像预处理做详细介绍 最后就是 Matlab 在人脸识别系统中的 具体应用 即人脸图像识别的具体技术 并用 Matlab 进行仿真试验 并得到结果 第四章是对人脸图像识别体系构架的设计 并给出了人脸识别 用到的理论知识即直方图差异对比 并编写 matlab 代码实现人脸图 像识别 第五章总结了全文的工作并对以后的需要进一步研究的问题进 行了展望 6 第二章 图像处理的 Matlab 实现 2 1 Matlab 简介 由 Math Work 公司开发的 Matlab 语言语法限制不严格 程序设 计自由度大 程序的可移植性好 Matlab 还推出了功能强大的适应于 图像分析和处理的工具箱 常用的有图像处理工具箱 小波分析工具 箱及数字信号处理工具箱 利用这些工具箱 我们可以很方便的从各 个方面对图像的性质进行深入的研究 Matlab 图像处理工具箱支持 索引图像 RGB 图像 灰度图像 二进制图像并能操作 bmp jpg tif 等多种图像格式文件 2 2 数字图像处理及过程 图像是人类获取信息 表达信息和传递信息的重要手段 利用 计算机对图像进行去除噪声 增强 复原 分割 提取特征等的理 论 方法和技术称为数字图像处理 数字图像处理技术已经成为信 息科学 计算机科学 工程科学 地球科学等诸多方面的学者研究 图像的有效工具 数字图像处理主要包括图像变换 图像增强 图 像编码 图像复原 图像重建 图像识别以及图像理解等内容 2 2 1 图像处理的基本操作 读取和显示图像可以通过 imread 和 imshow 来实现 图像的输 7 出用 imwrite 函数就可以很方便的把图像输出到硬盘上 另外还可以 用 imcrop imrisize imrotate 等来实现图像的裁剪 缩放和旋转 等功能 2 2 2 图像类型的转换 Matlab 支持多种图像类型 但在某些图像操作中 对图像的类型有 要求 所以要涉及到对图像类型进行转换 Matlab7 0 图像处理工具箱 为我们提供了不同图像类型相互转换的大量函数 如 mat2gray 函数 可以将矩阵转换为灰度图像 rgb2gray 转换 RGB 图像或颜色映像表 为灰度图像 在类型转换的时候 我们还经常遇到数据类型不匹配的 情况 针对这种情况 Matlab7 0 工具箱中 也给我们提供了各种数据类 型之间的转换函数 如 double 就是把数据转换为双精度类型的函数 2 2 3 图像增强 图像增强的目的是为了改善图像的视觉效果 提高图像的清晰度 和工艺的适应性 以及便于人与计算机的分析和处理 以满足图像复制 或再现的要求 图像增强的方法分为空域法和频域法两大类 空域法 主要是对图像中的各个像素点进行操作 而频域法是在图像的某个变 换域内对整个图像进行操作 并修改变换后的系数 如傅立叶变换 DCT 变换等的系数 然后再进行反变换 便可得到处理后的图像 下 面以空域增强法的几种方法加以说明 8 1 灰度变换增强 有多种方法可以实现图像的灰度变换 其中最常用的就是直方图 变换的方法 即直方图的均衡化 这种方法是一种使输出图像直方图 近似服从均匀分布的变换算法 Matlab7 0 图像处理工具箱中提供了 图像直方图均衡化的具体函数 histeq 同时我们可以用函数 imhist 函数来计算和显示图像的直方图 2 空域滤波增强 空域滤波按照空域滤波器的功能又可分为平滑滤波器和锐化滤 波器 平滑滤波器可以用低通滤波实现 目的在于模糊图像或消除噪 声 锐化滤波器是用高通滤波来实现 目的在于强调图像被模糊的细节 在 Matlab 中 各种滤波方法都是在空间域中通过不同的滤波算子实现 可 用 fspecial 函数来创建预定义的滤波算子 然后可以使用 imfilter 或 filter2 函数调用创建好的滤波器对图像进行滤波 2 2 4 边缘检测 数字图像的边缘检测是图像分割 目标区域识别 区域形状提 取等图像分析领域十分重要的基础 也是图像识别中提取图像特征的 一个重要属性 边缘检测算子可以检查每个像素的邻域并对灰度变 化率进行量化 也包括对方向的确定 其中大多数是基于方向导数掩模 求卷积的方法 常用的有 Sobel 算子 Prewitt 算子 Roberts 算子 Log 算子等 Matlab7 0 工具箱中提供的 edge 函数可以进行边缘检测 在 其参数里面 可以根据需要选择合适的算子及其参数 9 2 3 图像处理功能的 Matlab 实现实例 本文通过运用图像处理工具箱的有关函数对一人脸的彩色图像 进行处理 1 图像类型的转换 因后面的图像增强 边缘检测都是针对灰度图像进行的 而我们的 原图是 RGB 图像 所以首先我们要对原图类型进行转换 实现过程 代码如下 i imread f face1 jpg j rgb2gray i imshow j imwrite j f face1 tif 效果图 2 1 图 2 1 2 图像增强 1 灰度图像直方图均衡化 通过比较原图和直方图均衡化后的图像可见 图像变得更清晰 而 且均衡化后的直方图比原直方图的形状更理想 该部分的程序代码 10 如下 i imread f face1 tif j histeq i imshow j figure subplot 1 2 1 imhist i subplot 1 2 2 imhist j 执行后的效果图如图 2 2 和图 2 3 图 2 2 均衡化后的灰度 图像 图 2 3 均衡化前后的直方图对比图 11 2 灰度图像平滑与锐化处理 平滑滤波器的目的在于模糊图像或消除噪声 Matlab7 0 图像处理 工具箱提供了 medfilter2 函数用于实现中值滤波 wiener2 实现对图 像噪声的自适应滤波 在本文实例中 为了使滤波效果更明显 我们事 先为图像认为增加滤波 然后用自适应滤波方法对图像进行滤波 锐 化处理的目的在于强调图像被模糊的细节 在本实例中采用了预定义 高斯滤波器的方法对图像进行锐化滤波 功能实现的代码如下 i imread f fae1 tif j imnoise i guassian 0 0 02 subplot 1 2 1 imshow j j1 wiener2 j subplot 1 2 2 imshow j1 h fspecial gaussian 2 0 05 j2 imfilter i h figure subplot 1 2 1 im show i subplot 1 2 2 imshow j2 得到的效果图如图 2 4 和图 2 5 加入噪声的图像 滤波后的 图像 12 图 2 4 平滑滤波效果 原灰度图像 锐化 后的图像 图 2 5 锐化滤波效果图 3 边缘检测 Matlab7 0 图像处理工具箱提供了 edge 函数实现边缘检测 还 有各种方法算子供选择 在本实例中采用了 canny 算子来进行边 缘检 测 程序代码如下 i imread f face tif 13 j edge i canny 0 04 0 25 1 5 imshow j 效果图如图 2 6 原灰度图像 边缘检测 后的图像 图 2 6 边缘检测效果图 2 4 本章小结 以上实例只是对 Matlab 图像处理工具箱函数的一小部分运用 从 这些功能的运用可以看出 Matlab 语言简洁 可读性强 作为人脸识别 系统中图像预处理工具 有非常好的处理功能 14 第三章 人脸图像识别计算机系统 3 1 引言 计算机人脸识别是一个非常活跃的研究领域 因其在公安刑侦 破案 银行密码系统 计算机安全系统以及动态监视系统等方面都 有广泛应用 已成为当前模式识别 计算机视觉领域的研究热点 人脸识别系统一般包括人脸检测与定位 人脸图像预处理 特征提 取和匹配识别四个组成部分 其中 人脸图像预处理 作为特征提 取和识别的前提步骤 是计算机人脸识别系统中的必要环节 其目 的是在去除噪声 加强有用信息 对输入设备或其他因素造成的退 化现像进行复原 为后续的特征提取和识别作准备 不同的人脸识别系统根据其采用的图像来源和识别算法需要不 同 采用的预处理方法也不同 常用的人脸图像预处理方法有 滤 波去噪 灰度变换 图像二值化 边缘检测 尺寸归一化 灰度归 一化等 用在同一系统中的可能只有其中一种或几种预处理方法 但一旦库中采集到的原始图像质量发生较大变化 如人脸大小 光 照强度 拍摄条件 成像系统等方面变化 原有的预处理模块便不 能满足特征提取的需要 还要更新 这是极不方便的 鉴于此 作者在总结分析了灰度变换 滤波去噪 边缘检测三 种广泛应用于不同人脸识别系统中的预处理方法基础上 设计了一 个通用的人脸图像预处理仿真系统 该系统可对不同条件下的原始 图像进行相应的预处理 如 用户可根据需要选择使用不同的滤波 15 方法去除噪声 不同的边缘检测算子检测人脸边缘 选择不同的灰 度变换算法实现图像的灰度校正和灰度归一化 仿真系统同时还实 现了尺寸归一化 二值化等其他常用的图像预处理算法 3 2 系统基本机构 人脸识别是一个复杂的过程 一个计算机人脸识别的流程如图 3 1 所示 它包括几个步骤 对采集到的图像 首先进行人脸检测 在输入图像中寻找人脸 给出人脸有无的结果 然后进行人脸定 位 确定人脸的位置并提取出来 对人脸的定位在输入是图像序列 时一般也称之为人脸跟踪 通常检测和定位结合进行 对提取出来 的人脸借助人脸描述就可以进行 狭义的 人脸识别 即通过提取 特征来确定其身份 结束 图像采集 人脸检测定位 是否定位成功 图像与处理 是否处理成功 人脸识别 是否识别成功 识别结果 开始 是 否 否 是 是 否 否 是 是 否 否 图 3 1 基本框架图 16 3 3 人脸检测定位算法 人脸检测定位算法大致可分为两大类 基于显式特征的方法和 基于隐式特征的方法 所谓显式特征是指对人类肉眼来说直观可见的特征 如肤色 脸部轮廓 脸部结构等 基于显式特征的方法是指由人通过肉眼观 察 总结出人脸区别于 非人脸 区域的特征 然后根据被检测区 域是否满足这些 人脸特征 来判定该区域是否包含人脸 根据所 选择的 人脸特征 基于显式特征的方法分以下三类 基于肤色模 型的方法 模板匹配的方法 基于先验知识的方法 在彩色图像中 颜色是人脸表面最为显著的特征之一 利用颜 色检测人脸是很自然的想法 Yang 等在考察了不同种族 不同个体 的肤色后 认为人类的肤色能在颜色空间中聚成单独的一类 而影 响肤色值变化的最主要因素是亮度变化 因此他们采用广泛使用的 RGB 颜色空间 在滤去亮度值的图像中通过比较像素点的 值 与肤色范围来推断该像素点及其邻域是否属于人脸区域 除了 RGB 颜色空间 还有诸如 HIS LUV GLHS 等其它颜色空间被使用 寻找到肤色区域后 必须进行验证 排除类肤色区域 Yoo 等利用 肤色像素的连通性分割出区域 使用椭圆拟合各个区域 根据椭圆 长短轴的比率判断是否为人脸 模板匹配的方法一般是人为地先定义一个标准人脸模板 计算 输入图像与模板的似然度 然后 确定一个似然度阈值 用以判断 该输入图像中是否包含人脸 标准人脸模板可以是固定的样板 也 17 可以是带参变量的曲线函数 基于先验知识的方法则采用符合人脸生理结构特征的人脸镶嵌 图 mosaic image 模型 并在分析了足够多的人脸图像样本的基础 上 针对人脸的灰度 边缘 纹理等信息 建立一种关于人脸的知 识库 在检测中 首先抽取这些灰度 边缘等信息 然后检验它是 否符合知识库中关于人脸的先验知识 以上三种方法的优缺点比较见表 3 1 表 3 1 基于显示特征方法的特点 检测方法 优点与适用场合 缺点与需要改进的地方 肤色模型 检测速度快 高光和阴影会造成人脸区域被分 割而被漏检 肤色区域的存在提 高了预警率 模板匹配 直观性好 具有较 好的适应性 对表情 尺度变换敏感 可变模 板的选择和参数的确定非常困难 基于知识的 方法 适用复杂图像中的 人脸检测 依赖先验知识 多尺度空间遍历 工作量大 运算时间长 18 基于隐式特征的方法将人脸区域看成一类模式 使用大量 人 脸 非人脸 样本训练 构造分类器 通过判别图像中所有可能 区域是否属于 人脸模式 的方法来实现人脸检测 这类方法有 特征脸法 人工神经网络法 支持向量机法 积分图像法 特征脸法 eigenface 把单个图像看成一维向量 众多的一维 向量形成了人脸图像特征空间 再将其变换到一个新的相对简单的 特征空间 通过计算矩阵的特征值和特征向量 利用图像的代数特 征信息 寻找 人脸 非人脸 两种模式在该特征空间中的分布 规律 人工神经网络 Artificial Neural Network ANN 的方法是通过 训练一个网络结构 把模式的统计特性隐含在神经网络的结构和参 数之中 基于人工神经网络的方法对于复杂的 难以显式描述的模 式 具有独特的优势 支撑向量机 Support Vector Machine SVM 法是在统计学习 理论基础上发展出的一种新的模式识别方法 它基于结构风险最小 化的原理 较之于基于经验风险最小化的人工神经网络 一些难以 逾越的问题 如 模型选择和过学习问题 非线性和维数灾难问题 局部极小点问题等都得到了很大程度上的解决 但是直接使用 SVM 方法进行人脸识别有两方面的困难 第一 训练时需要求解二次规 划问题计算复杂度高 内存需求量巨大 第二 在非人脸样本不受 限制时 需要极大规模的训练集合 得到的支持向量会很多 使得 分类器的计算量过高 19 基于积分图像 Integral Image 特征的人脸检测方法是 Viola 等 新近提出的一种算法 它综合使用了积分图像描述方法 Adaboost 学习算法及训练方法 级联弱分类器 以上四种方法的优缺点比较见表 3 2 表 3 2 基于隐式特征方法的特征 检测方 法 优点 缺点与需要改进的地方 本征脸 法 标准人脸模板能抽象人脸全 部信息 运算不涉及迭代耗 费时间短 但模板检测效率低 多模 板提高了效率也增加了检 测时间 神经网 络法 检测效率高 错误报警数目 不多 训练成熟的网络监测 速度快 多样本训练耗费时间多 但网络监测错误报警数目 多 支撑向 量机机 法 比神经网络方法具有更好的 泛化能力 能对为观测到的 例子进行有效分类 非人脸 样本复杂多样 造成支持向量数目多 运 算复杂度大 基于积 分图像 分析法 检测速度快 基本满足实时 检测要求 检测效率可以与 神经网络法比较 错误报警数目少时 检测 率不高 运用 matlab 仿真进行人脸检测定位实例 人脸检测定位程序 20 Reading of a RGB image i imread face1 jpg I rgb2gray i BW im2bw I figure imshow BW minimisation of background portion n1 n2 size BW r floor n1 10 c floor n2 10 x1 1 x2 r s r c for i 1 10 y1 1 y2 c for j 1 10 if y2 9 c x1 1 x2 r 10 loc find BW x1 x2 y1 y2 0 21 o p size loc pr o 100 s if prmx end display Testing Done function box Callback hObject eventdata handles function box CreateFcn hObject eventdata handles if ispc end Executes on button press in Input Image button function Input Image button Callback hObject eventdata handles hObject handle to Input Image button see GCBO eventdata reserved to be defined in a future version of MATLAB handles structure with handles and user data see GUIDATA global filename pathname I filename pathname uigetfile bmp Test Image axes handles axes1 42 imgpath STRCAT pathname filename I imread imgpath imshow I Executes during object creation after setting all properties function axes3 CreateFcn hObject eventdata handles
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!