《圆锥的侧面积和全面积》教学设计.doc

上传人:jian****018 文档编号:9263609 上传时间:2020-04-04 格式:DOC 页数:5 大小:41KB
返回 下载 相关 举报
《圆锥的侧面积和全面积》教学设计.doc_第1页
第1页 / 共5页
《圆锥的侧面积和全面积》教学设计.doc_第2页
第2页 / 共5页
《圆锥的侧面积和全面积》教学设计.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
24.4弧长和扇形面积教学设计(第二课时)圆锥的侧面积和全面积汪义元 设计理念本节课主要内容是探测圆锥的侧面积公式和全面积公 式,并能利用圆锥的侧面积公式和全面积公式解决实际问题.本课采取以学生为中心,在整个教学过程中由教师担任组织者、指导者、帮助者和促进者,利用情境、协作、会话等学习环境充分调动学生的主动性、积极性和创新精神,最终实现在学生自主活动、主动探索、合作交流、亲身体验的基础上来建构新知识。除了知识与技能的学习和掌握外,本节课更注重如何在课堂教学中促进学生的主体意识、创新精神和实践能力的发展。 教学内容 义务教育课程标准实验教科书数学(新人教版)九年级上册24章第四节第二课时。 教学目标 知识与技能:(1)使学生了解圆锥的特征,了解圆锥的侧面、底面、高、母线等概念,并知道圆锥的侧面展开图是扇形;(2)使学生会计算圆锥侧面展开扇形的圆心角大小;(3)使学生会计算圆锥的侧面积和全面积。过程与方法:(1)通过探究圆锥的形成过程,让学生理解圆锥侧面积和全面积的计算方法;(2)通过教学互动,培养学生的观察能力和抽象概括能力,理解并掌握研究实际问题的方法。情感态度与价值观:(1)通过圆锥的实物观察及有关概念的归纳向学生渗透“实践出真知”的观念;(2)应用圆锥侧面积展开图的计算解决实际问题,向学生渗透理论联系实际的观点;(3)激发学生的学习热情,培养团结协作的习惯。 学情与教材分析本课是在学生小学学过圆锥的初步认识和前两节学过的弧长和扇形面积的有关计算及圆柱的侧面展开图的基础上,从圆锥的形成过程描述了圆锥的特征,给出了圆锥的母线、高的概念,指明它的侧面展开图是一个扇形,而该扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长,然后通过例题说明圆锥有关面积及计算。针对初中生探求欲望高,表现欲强的年龄特征,我把此课设计成探索式、互动式的,以期激发学生的主体意识和学习兴趣。教学重点 1经历探索圆锥侧面积计算公式的过程 2了解圆锥的侧面积计算公式,并会应用公式解决问题教学难点 经历探索圆锥侧面积计算公式曲面问题转化为平面问题。(也就是母线和底面周长和展开扇形半径与弧长之间的对应关系)教学方法 启发引导演示总结学习方法 观察交流探究归纳教具准备 圆锥模型(纸做)扇形纸片剪刀 双面胶、长方形白纸 教学课件教学过程一、复习巩固及导入。 1、弧长为8,半径为16的弧所对的圆心角是多少?2、面积为8,圆心角为45的扇形的半径是?师展示问题,关注学生的熟练程度。 二检测先学。 1师提问题: 生活中你都见过哪些圆锥?(出示幻灯片,带着优美的音乐进入了蒙古大草原,看到了雪白的蒙古包,让学生看到雪白的蒙古包感受到圆锥的存在.) 2、通过预习和图片观察,谈谈你对圆锥的认识?(主要是结构与组成) 3、通过自学,谈你都知道哪些得到圆锥的办法?生各述己见、互相补充。 师出示圆锥形模型,提问:“漂亮吗?你能用手上的长方形白纸折叠出这种圆锥形模型吗?”学生先认真观察圆锥形,再尝试用手中的长方形白纸折叠圆锥形模型。(学生制作可能有难度,此时需要教师引导)设计意图:初步尝试、体验,产生悬念,造成认知冲突,从而激发学生兴趣,使学生产生强烈的求知欲望。 三分析问题,主动探究老师导入:为了制作这种圆锥形模型,我们首先要对圆锥有个整体认识结合实物介绍圆锥的底面、侧面、母线、高等概念。(学生边听、边理解、边记忆)(设计意图:学生在小学已经初步认识了圆锥,但对底面、侧面,尤其是母线、高等概念的理解可能还不是很到位,在此通过实物对这些概念作一简介,既形象又直观,学生易于接受,这就为后面的探究和推导展开扇形的圆心角公式和圆锥的侧面积公式做好了准备。)让一位学生把老师手上的圆锥形模型沿圆锥的一条母线剪开,然后用双面胶粘贴在黑板上,老师引导学生通过观察得出圆锥的侧面展开图是扇形。老师在学生动手和归纳的基础上,进一步设问:“怎样才能制作出这种圆锥形的小帽子?”(设计意图:通过学生动手,主动探索出圆锥的侧面展开图为扇形。再次设问是为了进一步激发学生的求知欲。)老师引导:学生观察、分析、比较出展开扇形与圆锥的关系(可作几次演示,让学生有意识地观察)。学生分组讨论,合作探究出展开的扇形半径、弧长与圆锥的母线,底面周长的关系。(设计意图:新课程标准指出:要关注全体学生的发展,促使学生形成积极主动的学习态度。这里让学生通过比较、讨论、合作探索出展开扇形与圆锥间的内在联系,即扇形半径?圆锥母线,扇形弧长?圆锥底面周长。知道这种对应关系是整节课的关键,这里老师应注意充分调动全班各层次学生,尤其是所谓“差生”的学习积极性,使他们都能争先恐后地发表自己的见解,体验探索活动的乐趣和成功的快感,从而树立学习的自信心。)四 建构新知,解决问题首先,老师给出数量特例,如何制作母线长a15cm,底面半径r5cm的圆锥形帽子?学情预设:(1)学生刚开始可能无从下手,老师应先引导:“要制作这种圆锥形帽子,首先要画出这个圆锥的侧面展开图。(2)有的学生可能会发现:扇形的半径等于圆锥的母线a15cm,但不知道扇形的圆心角,所以要制作这种模型的关键是求出扇形的圆心角。(3)老师先鼓励和表扬这些学生,引导学生再次认识扇形弧长与圆锥底面周长的对应关系,再通过这种对应关系列出式子:(设计意图:从新知识的生长点设疑,促进学生从“最近发展区”向现实发展水平转化,也为学生探究一般规律,得出公式)拓展思路。 然后让学生动手制作a15cm,r5cm的圆锥形模型(同桌学生可以合作讨论,共同制作)。老师拿着已制作好的a15cm,r5cm的圆锥形模型巡视,并作适当的引导和鼓励,让学生把制作好的模型套在老师的模型上验证,评价学生的劳动成果。 设计意图:通过学生的动手操作、亲身体验,使学生在获得新知和培养实践能力的同时体验成功的快感,增强学习的兴趣。老师再进一步设疑:“你能推导出圆心角的一般公式吗?”首先引导学生去猜想、讨论,老师再对上述特例作适当点拨,使学生领悟。学生再分组讨论交流,在老师的引导下抓住扇形弧长等于圆锥底面周长,推导出公式:。在学生推导完公式后,师生再共同归纳推导方法。(设计意图:诱导学生主动探究,通过学生的猜想、论证,激发思维活动,培养学生的探索能力和合作学习的习惯。)老师再次设问:要制作母线a15cm,底面半径r5cm的圆锥形模型需要多少材料?如何计算圆锥的侧面积?学生根据条件尝试进行计算,通过讨论,并在老师适当引导下得出公式:S圆锥侧ra。在学生推导完圆锥侧面积公式后,老师引导学生与圆柱的侧面积公式加以比较。圆锥的侧面展开图是一个扇形,圆锥的侧面展开图中扇形的半径即为母线长;圆锥的底面圆周长即为圆锥的侧面展开图中扇形的弧长。(设计意图:通过估算、推导,步步深入,探索新知,再通过与圆柱的侧面积公式的比较,把新知识真正纳入到学生原有的认知结构中去。)引导学生分析讨论例题:例:蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为35m2,高为3.5m,外围高1.5m的蒙古包,至少需要多少m2的毛毡?(结果精确到1m2).老师强调:在解决该实际问题的过程中,不能采用四舍五入法保留有效数字,而必须采用进一法,为什么? 进一步提问:如何求有底面的圆锥的表面积。 学生容易得到:S全面积rar2设计意图:培养学生的数学应用意识和解决实际问题的能力。 四 巩固与应用学生练习与部分学生板演课本习题:如果圆锥的底面周长是20,侧面展开后所得的扇形的圆心角为120,求该圆锥的侧面积和全面积。老师进行巡视,及时了解学生在练习中出现的典型错误,并把握住这个机会,及时鼓励学生去争辩,进行矫正。(设计意图:通过多角度的练习,并对典型错误进行讨论与矫正,巩固所学内容,同时使学生将新知迁移应用到新的情境中。)五 归纳小结老师提问:(1)通过本堂课学习,你学会了什么?(2)你学会了哪些重要方法?有什么启示?学生自由发言,可以相互补充:(1)知道了圆锥的侧面展开图是扇形;(2)会画圆锥的侧面展开图;(3)学会了推导圆心角公式和圆锥侧面积公式的方法;(4)会根据已知条件求圆锥的侧面积和全面积;(5)学会了制作圆锥形帽子的方法。(设计意图:通过学生自我小结,明确了本节课的目标,同时又实现了自我反馈,从而建构起自己的知识经验,形成自己的见解。)六 课后作业基础练习:(1)若一个圆锥的底面半径为3cm,母线长为5cm,则它的侧面展开图的圆心角是度;(2)一个扇形的半径为60cm,圆心角为150,若用它做成一个圆锥的侧面,这个圆锥的底面半径为;(3)底面圆半径为3cm,高为4cm的圆锥侧面积是 。能力提升:(1)一个圆锥的侧面积是底面积的3倍,求这个圆锥的侧面展开图的圆心角的度数;(2)如图1,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,求小猫所经过的最短路程。(要明白关键就是求什么) 【设计思路】本课主要采用“主体建构”教学模式,让学生在解决问题中、在动手实践中去学习,这就充分调动学生学习的主动性与积极性,学习就不再是被动的接受,而是主动把新知纳入到原有的知识结构中去。使学生正确理解展开扇形的半径与弧长和圆锥的母线与底面周长之间的对应关系,进而能准确进行圆锥的有关数据和展开图有关数据的转化,是本节课的教学难点之一,为了突破这个难点,主要采取三个教学策略:(1)把展开扇形卷成圆锥,再把圆锥展开成扇形(演示几次),有意识地让学生观察分析上述对应关系,这既培养了学生的观察分析能力,又为后续内容的学习作铺垫。(2)给出母线a15cm和底面半径r5cm的数量特例,让学生去尝试制作圆锥形帽子,学生通过讨论得到共识,即必须先求出圆心角的度数,而这个特殊的圆心角有部分学生能求出来,教师再让这部分学生当“小老师”,把解决问题的过程与方法教给其他学生,则促成了学生的“最近发展区”向现实发展水平转化。(3)放手让学生去大胆猜想求圆心角的公式并开展讨论,再让学生自由发言,这就解决了推导圆心角公式的难点,也使学生对圆锥有关数据与展开扇形有关数据之间的对应关系有了更深层次的认识。整节课的思路就是要使学生在“做中学”,真正体现了“以学生的发展为本”的课改新理念。教师不只是把新知识传授给学生,而是让学生去主动建构,但教师的引导与帮助对于学生的思考和新知识的建构来说尤为重要。整节课不是老师如何去控制学生的学习活动,而是要创设良好的环境去促进学生的学习,要引导学生通过观察、分析、猜想、概括、验证等思维活动和学生的动手操作、交流讨论等活动,来构建与此相关的知识经验。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!