资源描述
压缩包内含有CAD图纸和说明书,咨询Q 197216396 或 11970985 小型搬运工机器人摘 要机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。关键词: 结构设计,机器臂,关节型机械手,结构分析AbstractThe robot is a typical mechatronic products, spray painting robot is a hot research field of the robot. Study on the spray painting robot requires a combination of mechanical, electronic, information theory, artificial intelligence, biology and computer science knowledge, at the same time, its development has promoted the development of these disciplines.In this paper, a design of arm structure used in the painting robot, and complete the general assembly drawing and part drawing. Requirements for the mechanics analysis of the robot model, estimate required on each joint torque and power, complete motor and reducer selection. Secondly, from the motor and reducer connection and fixation of joint structure, design, and the mechanism of important connections check the strength.Keywords:Structure design, Robot arm, Structure analysis目录第1章 绪论51.1 机械手的历史与发展51.1.1 工业机器人简介51.1.2世界机器人的发展51.2 机械手的组成71.3 机械手的分类8第2章总体方案设计92.1 机械手工程概述92.2 工业机械手总体设计方案论述112.3 机械手机械传动原理122.4 机械手总体方案设计12第3章机械手大臂结构设计153.1 大臂部结构设计的基本要求153.2 大臂部结构设计163.3 大臂电机及减速器选型16第4章机械手小臂结构设计184.1 腕部设计184.2 小臂部结构设计234.3小臂电机及减速器选型23第5章机械手机身结构设计245.1 步进电机选择245.2 齿轮设计与计算295.3 轴的设计与计算375.4机身结构的设计45第6章 控制系统设计466.1 控制系统模式的选择466.2 单片机最小系统设计476.3 步进电机工作原理496.4 步进电机的控制50结论与展望54参考文献55致谢57第1章 绪论1.1 机械手的历史与发展1.1.1 工业机器人简介几千年前人类就渴望制造一种像人一样的机器,以便将人类从繁重的劳动中解脱出来。如古希腊神话阿鲁哥探险船中的青铜巨人泰洛斯(Taloas),犹太传说中所说的泥土巨人等等,这些优美的神话时刻激励着人们一定要把优美的神话变为现实,早在两千年前就开始出现了自动木人和一些简单的机械木偶人。到了近代 ,机器人这一词语的出现和世界上第一台工业机器人问世之后,不同功能的机器人也相继出现并且活跃在不同的领域,从天上到地下,从工业拓广到 农业、林、牧、渔,甚至进入平常的百姓家。机器人的种类之多,应用之广,影响之深,是我们始料未及的。工业机器人由操作机(机械本体)、控制器、驱动系统和检测传感装置构成,是一种仿人操作、可重复编程、自动控制、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。 机器人并不是在简单意义上的代替人工的劳动,而是综合了人的特长和机器特长的一种模拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、适应各种恶劣环境的能力,从某种意义上说它也是机器的进化过程的产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 所以就有了就有了很多国家地区制造出来工业机器人,而如今我设计的题目就是机器人的一个简单部位机械手。1.1.2世界机器人的发展国外机器人领域发展近几年有如下几个趋势:(1) 工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单个工业机器人价格不断下降,平均单机价格从91年的103万美元降至97年的65万美元。(2)机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位的一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,这就便于标准化、网络化;器件集成度提高,控制柜日见小巧,而且采用模块化结构;大大提高了系统的易操作性,可维修性和可靠性。(4)机器人中的传感器作用日益重要,除了采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。(6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名的实例。(7)机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。1.1.3 我国工业机器人的发展有人认为,应用机器人只是为了节省劳动力,而我国劳动力资源丰富,发展机器人不一定符合我国国情。然而这是一种错误的想法。在我国,社会主义制度的优越性决定了机器人能够充分发挥其长处。它不仅能为我国的经济建设带来高度的生产力和巨大的经济效益,而且将为我国的海洋开发、宇宙开发、核能利用等新兴领域的发展做出卓越的贡献。我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出装配、喷漆、点焊、弧焊、搬运等机器人;其中有150多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线或生产站上获得了规模的应用,弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、成本比较高、供货周期长,而且可靠性、质量不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模化设计,积极推进工业机器人产业化的进程。我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。其中最为突出的是水下机器人,6000米水下无缆机器人的成果在世界上处于领先水平,还开发出双臂协调控制机器人、直接遥控机器人、管道机器人、爬壁机器人等几种机器人;在机器人视觉、触觉、力觉、声觉等基础技术的开发应用上耗费了不少时间与工作量,有了一定的发展基础。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发应用方面则才刚刚起步,与国外先进水平相比差距较大,需要在原有成绩的基础上,作出比较突出的改变,才能形成系统配套可供实用的技术和产品,以其在“十五”后期立于世界先进行列之中。1.2 机械手的组成一般来说,机械手主要有以下几部分组成:1. 手部(或称抓取机构):包括手爪、传力机构等,主要起抓取和放置物件的作用。2. 传送机构(或称臂部):包括手臂、手腕等,主要起到改变物件方向和位置的作用。3. 驱动部分:它是前两部分的动力,因此也称为动力源,常用的有气压、液压、电机和电力四种驱动形式。4. 控制部分:它是机械手动作的指挥系统,是机械手的核心部位,由它来控制动作的顺序(程序)、位置和时间(甚至速度与加速度)等。5. 其它部分:如机体、行走机构、液压装置、步进机、传感装置和行程检测装置等。1.3 机械手的分类机械手从使用范围、驱动方式、运动坐标形式以及臂力大小四个方面的分类分别为:1. 按使用范围分类:(1) 专用机械手 一般只有固定的程序,而无单独的控制系统。它从属于某种机器或生产线用以自动传送物件或操作某一工具,例如“毛坯上下料机械手”、“曲拐自动车床机械手”、“油泵凸轮轴自动线机械手”等等。这种机械手结构较简单,成本较低,适用于动作比较简单的大批量生产的场合。(2) 通用机械手 指具有可变程序和单独驱动的控制系统,不从属于某种机器,而且能自动完成传送物件或操作某些工具的机械装置。通用机械手按其定位和控制方式的不同,可分为简易型和伺服型两种。简易型只是点位控制,故属于程序控制类型,伺服型可以是点位控制,也可以是连续轨迹控制,一般属于数字控制类型。2. 按驱动方式分类:(1) 液压驱动机械手 以压力油进行驱动;(2) 气压驱动机械手 以压缩空气进行驱动;(3) 电力驱动机械手 直接用电动机进行驱动;(4) 机械驱动机械手 是将主机的动力通过凸轮、连杆、齿轮、间歇机构等传递给机械手的一种驱动方式。3. 按运动坐标型式分类:(1) 直角坐标式机械手 臂部可以沿直角坐标轴X、Y、Z三个方向移动,亦即臂部可以前后伸缩(定为沿X方向的移动)、左右移动(定为沿Y方向的移动)和上下升降(定为沿Z方向的移动);(2) 圆柱坐标式机械手 手臂可以沿直角坐标轴的X和Z方向移动,又可绕Z轴转动(定为绕Z轴转动),亦即臂部可以前后伸缩、上下升降和左右转动;(3) 球坐标式机械手 臂部可以沿直角坐标轴X方向移动,还可以绕Y轴和Z轴转动,亦即手臂可以前后伸缩(沿X方向移动)、上下摆动(定为绕Y轴摆动)和左右转动(仍定为绕Z轴转动);(4) 多关节式机械手 这种机械手的臂部可分为小臂和大臂。其小臂和大臂的连接(肘部)以及大臂和机体的连接(肩部)均为关节(铰链)式连接,亦即小臂对大臂可绕肘部上下摆动,大臂可绕肩部摆动多角,手臂还可以左右转动。4. 按机械手的臂力大小分类:(1) 微型机械手 臂力小于1;(2) 小型机械手 臂力为110;(3) 中型机械手 臂力为1030; (4) 大型机械手 臂力大于30。我所设计的工业机器人能够抓取50g左右的物体,并且用步进电机来控制机器人的每个自由度。该机器人拥有六个自由度。 1)可搬重量 最大50g 2)速度 最大10cm/s 3)臂的长度 总高要求500mm 4)机器人本体重量 小于25kg 5)驱动电机 六台步进电机 6)位置再现精度 士1.0mm第2章总体方案设计2.1 机械手工程概述机械手工程是一门跨学科的综合性技术,它涉及到力学、机构学、机械设计、气动液压技术、传感技术、计算机技术和自动控制技术等学科领域。人们将已有学科分支中的知识有效地组合起来用以解决综合性的工程问题的技术称之为“系统工程学”。以机械手设计为例,系统工程学认为,应当将其作为一个系统来研究、开发和运用,从机械手的整体出发来研究其系统内部各组成部分之间的有机联系和系统外部环境的相互关系的一种综合性的设计方法。从系统功能的观点来看,将一部复杂的机器看成是一个系统,它由若干个子系统按一定规律有机地联系在一起,是一个不可分的整体。如果将系统拆开、则将失去作为一个整体的特定功能。因此,在设计一部较复杂的机器时,从机器系统的概念出发,这个系统应具有如下特性:(1)整体性由若干个不同性能的子系统构成的一个总的机械系统应具有作为一个整体的特定功能。(2)相关性系统内各子系统之间有机联系、有机作用,具有某种相互关联的特性。(3)目的性每个系统都应有明确的目的和功能,系统的结构、系统内各子系统的组合方式决定于系统的目的和功能。(4)环境适应性任何一个系统都存在于一定的环境中,必须能适应外部环境的变化。因此,在进行机械手设计时,不仅要重视组成机械手系统的各个部件、零件的设计,更应该按照系统工程学的观点,根据机械手的功能要求,将组成机械手系统的各个子系统部件、零件合理地组合,设计出性能优良适于工作需要的机械手产品。在比较复杂的工业机械手系统中大致包括如下:操作机,它是完成机械手工作任务的主体,包括机座、手臂、手腕、末端执行器和机构等。驱动系统,它包括作为动力源的驱动器,驱动单元,伺服驱动系统由各种传动零、部件组成的传动系统。控制系统,它主要包括具有运算、存储功能的电子控制装置(计算机或其他可编程编辑控制装置),人机接口装置(键盘、示教盒等),各种传感器的信息放大、传输和处理装置,传感器、离线编程、设备的输入/输出通讯接口,内部和外部传感器以及其他通用或专用的外围设备14。工业机械手的特点在于它在功能上的通用性和重新调整的柔性,因而工业机械手能有效地应用于柔性制造系统中来完成传送零件或材料,进行装配或其他操作。在柔性制造系统中,基本工艺设备(如数控机床、锻压、焊接、装配等生产设备)、辅助生产设备、控制装置和工业机械手等一起形成了各种不同形式地工业机械手技术综合体地工业机械手系统。在其他非制造业地生产部门,如建筑、采矿、交通运输等生产领域引用机械手系统亦是如此。2.2 工业机械手总体设计方案论述(一) 确定负载目前,国内外使用的工业机械手中,负载能力的范围很大,最小的额定负载在5N以下,最大可达9000N。负载大小的确定主要是考虑沿机械手各运动方向作用于机械接口处的力和扭矩。其中应包括机械手末端执行器的重量、关节工件或作业对象的重量和规定速度和加速度条件下,产生的惯性力等。由本次设计给的设计参数可初估本次设计属于小负载。(二) 驱动方式由于步进电机具有控制性能好,控制灵活性强,可实现速度、位置的精确控制,对环境没有影响,体积小,效率高,适用于运动控制要求严格的中、小型机械手等特点,故本次设计采用步进电机。(三)传动系统设计机械手传动装置中应尽可能做到结构紧凑、重量轻、转动惯量和体积小,在传动链中要考虑采用消除间隙措施,以提高机械手的运动和位置控制精度。在机械手中常采用的机械传动机构有齿轮传动、蜗杆传动、滚珠丝杠传动、同步齿形带传动、链传动、行星齿轮传动、谐波齿轮传动和钢带传动等,由于齿轮传动具有效率高,传动比准确,结构紧凑、工作可靠、使用寿命长等优点,且大学学习掌握的比较扎实,故本次设计选用齿轮传动。(四)工作范围工业机械手的工作范围是根据工业机械手作业过程中操作范围和运动轨迹来确定,用工作空间来表示的。工作空间的形状和尺寸则影响机械手的机械结构坐标形式、自由度数和操作机各手臂关节轴线的长度和各关节轴转角的大小及变动范围的选择(五)运动速度机械手操作机手臂的各个动作的最大行程确定后,按照循环时间安排确定每个动作的时间,就能进一步确定各动作的运动速度,用m/s或()/s表示,各动作的时间分配要考虑多方面的因素,例如总的循环时间的长短,各动作之间顺序是依序进行还是同时进行等。应试做各动作时间的分配方案表,进行比较,分配动作时间除考虑工艺动作的要求外,还应考虑惯性和行程的大小,驱动和控制方式、定位方式和精度等要求。2.3 机械手机械传动原理该方案结构设计与分析该搬运机械手的本体结构组成如图图2.1 搬运机械手本体组成各部件组成和功能描述如下: 底座部件: 底座部件包括底座、齿轮传动部件、轴承,步进电机等。机座作用是支撑部件,支承和转动大臂部件,承受搬运机械手的全部重量和工作载荷,所以机座应有足够的强度、刚度和承载能力。另外机座还要求有足够大的安装基面,以保证搬运机械手工作时的稳定运行。 搬运机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动手臂分为大臂和小臂。大臂部件:包括大臂和齿轮传动部件,驱动电机。小臂部件:包括小臂、传动轴、同步传动带等,在小臂一端固定驱动手腕运动的步进电机。手腕部件:包括手腕壳体、传动齿轮和传动轴、机械接口等。2.4 机械手总体方案设计工业机械手的结构形式主要有直角坐标结构,圆柱坐标结构,球坐标结构,关节型结构四种。各结构形式及其相应的特点,分别介绍如下3。(1) 直角坐标机械手结构 直角坐标机械手的空间运动是用三个相互垂直的直线运动来实现的,如图2-1(a)由于直线运动易于实现全闭环的位置控制,所以,直角坐标机械手有可能达到很高的位置精度(m级)。但是,这种直角坐标机械手的运动空间相对机械手的结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机械手的结构尺寸要比其他类型的机械手的结构尺寸大得多。直角坐标机械手的工作空间为一空间长方体。直角坐标机械手主要用于装配作业及搬运作业,直角坐标机械手有悬臂式,龙门式,天车式三种结构。(2) 圆柱坐标机械手结构圆柱坐标机械手的空间运动是用一个回转运动及两个直线运动来实现的,如图2-1(b)。这种机械手构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。(3) 球坐标机械手结构球坐标机械手的空间运动是由两个回转运动和一个直线运动来实现的,如图2-1(c)。这种机械手结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。(4) 关节型机械手结构关节型机械手的空间运动是由三个回转运动实现的,如图2-1(d)。关节型机械手动作灵活,结构紧凑,占地面积小。相对机械手本体尺寸,其工作空间比较大。此种机械手在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这种类型的机械手。关节型机械手结构,有水平关节型和垂直关节型两种。(a) 直角坐标型 (b) 圆柱坐标型 (c) 球坐标型 (d) 关节型图2-2 四种机械手坐标形式根据任务书要求和具体实际我们选择的是(d) 关节型。图2-3 机械手坐标示意图具体到本设计,因为设计要求搬运的加工工件的质量达50g,同时考虑到数控机床布局的具体形式及对机械手的具体要求,考虑在满足系统工艺要求的前提下,尽量简化结构,以减小成本、提高可靠度。该机械手手臂运动范围小,且有较高的定位准确度,要求设计的机械手为六个自由度,其中腰部有一个旋转自由度,大臂和小臂的俯仰自由度,小臂的旋转自由度,手腕的俯仰、旋转自由度。第3章机械手大臂结构设计3.1 大臂部结构设计的基本要求臂部部件是搬运机械手的主要部件。它的作用是支承手部,并带动它们做空间运动。臂部运动的目的:把手部送到空间运动范围内的任意一点。如果改变手部的姿态(方位)关节,则臂部自由度加以实现。因此,一般来说臂部设计基本要求: (1)臂部应承载能力大、刚度好、自重轻臂部通常即受弯曲(而且不仅是一个方向的弯曲),也受扭转,应选用弯和抗扭刚度较高的截面形状。很明显,在截面积和单位重量基本相同的情况下,钢管、工字钢和槽钢的惯性矩要比圆钢大得多。所以,搬运机械手常采用无缝钢管作为导向杆,用工字钢或槽钢作为支撑钢,这样既提高了手臂的刚度,又大大减轻了手臂的自重,而且空心的内部还可以布置驱动装置、传动装置以及管道,这样就使结构紧凑、外形整齐。(2)臂部运动速度要高,惯性要小在一般情况下,手臂的要求匀速运动,但在手臂的启动和终止瞬间,运动是变化的,为了减少冲击,要求启动时间的加速度和终止前减速度不能太大,否则引起冲击和振动。 为减少转动惯量,应采取以下措施: (a) 减少手臂运动件的重量,采用铝合金等轻质高强度材料; (b) 减少手臂运动件的轮廓尺寸 (c) 减少回转半径 (d) 驱动系统中设有缓冲装置(3)手臂动作应灵活。为减少手臂运动件之间的摩擦阻力,尽可能用滚动摩擦代替滑动摩擦。(4)位置精度要高。一般来说,直角和圆柱坐标系搬运机械手位置精度高;关节式搬运机械手的位置最难控制,故精度差;在手臂上加设定位装置和检测机构,能较好的控制位置精度。本文采用铝合金材料设计成薄壁件,一方面保证机械臂的刚度,另一方面可减小机械臂的重量,减小基座关节电机的载荷,并且提高了机械臂的动态响应。砂型铸造铸件最小壁厚的设计。最小壁厚:每种铸造合金都有其适宜的壁厚,不同铸造合金所能浇注出铸件的“最小壁厚”也不相同,主要取决于合金的种类和铸件的大小,见表4.1所示:铸件尺寸 铸钢 灰铸铁 球墨铸铁 可锻铸铁 铝合金 铜合金 200200 200200500500 500500 58 1012 1520 35 410 1015 46 812 1220 35 68 33.5 46 35 68 表4.1 砂型铸造铸件最小壁厚计(mm)以上介绍的只是砂型铸造铸件结构设计的特点,在特种铸造方法中,应根据每种不同的铸造方法及其特点进行相应的铸件结构设计。本文机械臂壳体采用铸造铝合金。具体尺寸见总装配图。3.2 大臂部结构设计大臂壳体采用铸铝,方形结构,质量轻,强度大。3.3 大臂电机及减速器选型假设小臂及腕部绕第二关节轴的重量:M2=1Kg, M3=1KgJ1=M2L42+M3L52=10.052+10.12=0.0125kg.m2大臂平稳转动时速度为10r/min ,转化角速度为1.047rad/s为,则旋转开始时的转矩可表示如下:式中:T - 旋转开始时转矩 N.mJ 转动惯量 kg.m2- 角加速度rad/s2使机械手大臂从到所需的时间为:则:若考虑绕机械手手臂的各部分重心轴的转动惯量及摩擦力矩,则旋转开始时的启动转矩可假定为0.03N.m,取安全系数为2,则谐波减速器所需输出的最小转矩为:(3.2)选择步进电机:根据上面算的T01输出转矩大于该数值的步进电机,考虑到该机械手结构比较小,抓取的物件较轻,转矩也不大,所以选取体积比较紧凑,转矩较小的BYJ系列永磁式步进电机,而且其供电电压为5-12V,兼容单片机供电电压,方便控制,其具体的参数如图3.1所示。图3.1 BYJ系列永磁式步进电机一览表由上图知,24BYJ48步进电机的牵入转矩为34.3mNm,减速比为64:1,经过齿轮减速器后的转速比为:转矩*减速比,即34.364=2.1952Nm,远大于式(3.2)所算的转矩。故我们选择24BYJ48步进电机。第4章机械手小臂结构设计4.1 腕部设计腕部能够连接机器人的臂部和手部,支撑并且改变手部的姿态。腕部设计的要求有:结构紧凑、质量轻;动作灵活、平稳,定位精度高;所用材料强度、刚度高;与臂部及手部的连接部位的结构合理,传感器和驱动装置的合理布局及安装等。按自由度分类可将工业机器人手腕分为单自由度手腕、二自由度手腕和三自由度手腕。并不是所有的手腕都必须具备三个自由度,而是根据工业机器人实际使用的工作性能要求来确定。本课题所研究设计的喷漆机器人手腕具有摆动和转动两个自由度。二自由度的手腕可以由一个R关节和一个B关节联合构成BR关节实现,或由两个B关节组成BB关节实现,但不能由两个RR关节构成二自由度手腕,因为两个R关节的功能是重复的,实际上只起到单自由度的作用。本次设计要求腕部实现俯仰和偏转,即BB型手腕,如图3.1所示。由于现阶段国内步进电机产品研发生产技术的局限性,无法实现关节的直接驱动,所以为减轻整个小臂的自重,采取腕部步进电机后置远距离间接驱动,将其装在大臂的底部,固定在机身圆盘上,再通过两条链传动,一条链直接带动腕部的摆动,另一条链传动带轮带动锥齿轮轴通过一级锥齿轮的传递带动腕部的转动,虽然在腕摆时会产生手腕的附加转动,但是可以通过控制步进电机来控制干涉。图4.1 型手腕示意图本课题研究设计的喷漆机器人广泛用于进行汽车车身等喷涂作业,腕部作用于工作空间的最前端,有时需伸入狭窄的空间进行作业,所以为了满足手腕部分结构紧凑、质量轻、动作灵活等要求将其外形和尺寸设计成如图3.2所示。图4.2 手腕外形尺寸示意图4.1.1 手腕偏转驱动计算手腕的偏转是通过后置于大臂底部一侧的步进电机驱动,两级带轮链条传动,再经过锥齿轮啮合传动改变方向来实现偏置的。手腕的驱动力来自步进电机,首先要计算手腕偏转所需要的转矩,再计算电机的输出转矩,确定步进电机的型号,从而计算设计链传动以及锥齿轮传动的传动参数及相关尺寸。(1)选择步进电机手腕偏转时,需要克服摩擦阻力矩、工件负载阻力矩和腕部启动时的惯性力矩。根据转矩的计算公式15: (4.1)(4.2)(4.3) (4.4)(4.5)(4.6) (4.7) (4.8)式中: 手腕偏转所需力矩(Nm);摩擦阻力矩(Nm);负载阻力矩(Nm);手腕偏转启动时惯性阻力矩(Nm);工件负载对手腕回转轴线的转动惯量(kgm2);手腕部分对回转轴线的转动惯量(kgm2);手腕偏转角速度(rad/s);手腕质量(kg);负载质量(kg);启动时间(s);手腕部分材料密度(kg/m3);手腕部分外径和内径(m);手腕的长度(m);手腕偏转末端的线速度(m/s)。根据已知条件:m=50kg,m/s,m,m,m,s,手腕部分采用的材料假定为铸钢,密度kg/m3。将数据代入计算得:r/s因为腕部传动是通过两级带轮和一级锥齿轮实现的,所以查取手册15得:弹性联轴器传动效率;滚子链传动效率;滚动轴承传动效率(一对);锥齿轮传动效率;计算得传动的装置的总效率。电机在工作中实际要求转矩(4.9)根据上面计算的M电对步进电机选型,参照图3.1 BYJ系列永磁式步进电机一览表可知28byj48步进电机经过减速后的转矩为2.1952Nm,大于M电,满足驱动要求。故我们依旧选择28byj48步进电机。图4.3 28byj48型步进电机矩频特性曲线4.1.2电动机的选择设两臂及手腕绕各自重心轴的转动惯量分别为JG1、JG2、JG3,根据平行轴定理可得绕第一关节轴的转动惯量为: (4-1)、分别为10kg(包括负载2kg)、5kg、12kg。、分别为重心到第一关节轴的距离,其值分别为46.25mm、200mm、375mm,在式(3-1)中、故、可忽略不计。所以绕第一关节轴的转动惯量为: (4-2)同理可得小臂及腕部绕第二关节轴的转动惯量: = 式中:小臂重心距第二关节轴的水平距离 。 腕部重心距第二关节轴的水平距离 。则旋转开始时的转矩可表示如下 (4-3)式中:旋转开始的转矩 角加速度 使机器人主轴从到/s所需时间为:则:若考虑绕机器人手臂的各部分重心轴的转动惯量及摩擦力矩,则旋转开始时的启动转矩可假定为 电动机的功率可按下式估算 (4-4)式中: 电动机功率 ;负载力矩 ;负载转速 ; 传动装置的效率,初步估算取0.9; 系数1.52.5为经验数据,取1.5估算后就可选取电机,使其额定功率满足下式 (4-5)根据图4.1 28BYJ48选型一览表,依旧选择28byj-48步进电机4.2 小臂部结构设计小臂壳体采用铸铝,方形结构,质量轻,强度大。4.3小臂电机及减速器选型本关节机器人小臂部两个自由度是平面旋转,若轴承是光滑的,则旋转所需的静转矩比较小。因为将臂伸开呈一条直线时转动惯量最大,所以在旋转开始时可产生步进电机的转矩不足。如图4-1所示,设两臂及手腕绕各自重心轴的转动惯量分别为JG1、JG2、JG3,根据平轴定理可得绕第一关节轴的转动惯量为:J1=JG1+M1L12+JG2+M2L22+JG3+M3L32(4.1)其中:M1,M2,M3分别为负载0.05Kg,手臂0.5Kg,腕部0.5Kg;L1,L2,L3分别其长度。JG1M1L12、JG2M2L22、JG3M3L32,故可忽略不计,以绕第一关节轴的转动惯量为:J1= M1L12+M2L22+M3L32(4.2)=0.050.1432+0.50.4452+0.50.5422=0.393kgm2同理可得小臂及腕部绕第二关节轴的转动惯量:M2=2Kg,L4=24.25mm;M3=4Kg,L5=48.5mm。J2=M2L42+M3L52 (4.3)=10.024252+40.04852=0.16kg.m2设小臂转速,角速度从0加到所需加速时间,则同步带应输出转矩为: 若考虑绕机器人手臂的各部分重心轴的转动惯量及摩擦力矩,则旋转开始时的启动转矩可假定为0.3N.m,取安全系数为2,则谐波减速器所需输出的最小转矩为:选择步进电机选型,根据表4.1,我们依旧选择28BYJ48,经过减速比后的扭矩为2.1952Nm,大于0.6Mm,所以符合要求。第5章机械手机身结构设计机身系统部件的结构设计。(1)支撑架的设计支撑架主要承载大小臂上所有零件的重量,左端设计大臂平衡弹簧的固定连接孔,右端设计大臂驱动电机支撑架。考虑机身回转时的偏心力,合理设计支撑架与回转轴的连接,采用柱销式连接,两边用螺钉紧固。同时设计一个支撑圆盘加以固定,使其转动更加平衡。为了减轻自重,选用ZL401材料。(2)机座的设计机座在中间轴对应的位置处加工一个轴承固定座,其他无特殊要求。机身系统的内部设计主要是对传动系统的各部件进行设计计算与校核,其设计计算主要参照机械设计14。5.1 步进电机选择5.1.1 计算输出轴的转矩 (5.1) (5.2) (5.3) (5.4) (5.5)(5.6)惯性力矩 摩擦力矩输出轴转动角速度大臂转动惯量小臂转动惯量机身自身转动惯量启动时间=0.5s=0.8m/s=0.125m1.6 rad/s 当大小臂的位置关系如图5.1所示位置时,大小臂处于动作可以达到的极限位置,此时需要的数值最大。图5.1 大小臂处于极限位置由同组成员计算出的大臂质量及相关大臂相对中心线oa的垂直距离得出:=100mm,=10kg,代入式(5.5)得:=0.053kgm由同组组员算出的小臂质量及相关小臂相对oa线的垂直距离得出:=250mm,m=1kg,代入式(5.5)得:=0.335kgmm计算相关机械手机身结构设计数值得出:m圆盘=5kg;代入式(5.6)得:=0.2kgm代入(5.2)得到=44.86Nm 带入(5.1)得到=1.2Nm选择二级圆柱齿轮减速器i=9 (5.7)=0.99 联轴器传动效率=0.96 齿轮传动效率=0.98 轴承传动效率代入式(5.7)得到:0.807所以M电=M/i=1.2/9*0.807=0.11Nm5.1.2 确定各轴传动比总传动比=9 ,根据推荐的传动副传动比合理范围,取:高速级传动比=3 ,低速级传动比=3 5.1.3 传动装置的运动和动力参数由图3.2,各轴由高速至低速依次设计为轴(输入轴)、轴(中间轴)、轴(输出轴)。图5.2 传动示意简图各轴转速 (5.8) (5.9)=1.6rad/s=15.3r/min代入式(5.8)、式(5.9)得:45.9r/min,137.7r/min转矩计算 (5.10)1.07Nm代入式(5.7)得:0.8Nm同理得到:=0.76Nm=0.86Nm=0.73Nm由图4.1,依旧选择28BJY48步进电机,其频矩曲线如下图所示。图5.3 运行矩频特性由计算得到所需:=1.5Nm,137.7r/min该电机可以满足要求。根据前面计算,选择北京和利时电机电器厂的28BJY48型步进电机。由电机输出轴尺寸选择TL2型弹性套柱销联轴器,主从动端均选用型轴孔。5.2 齿轮设计与计算5.2.1 高速级齿轮设计与计算(1)选定齿轮类型、精度等级、材料与齿数按已知条件,选用直齿圆柱齿轮传动。由资料(下同)表10-1小齿轮材料选用45Cr(调质),表面硬度为280HBS,大齿轮材料选用45钢(调质),表面硬度为240HBS。选择7级精度,(2) 按齿面接触疲劳强度计算根据设计计算公式(10-9a)试算小齿轮分度圆直径,即: (5.11)载荷系数输入轴承受扭矩齿宽系数重合度系数弹性影响系数接触疲劳许用应力确定上式中各参数:试选载荷系数=1.3,小齿轮传递的扭矩为 =6.27Nm查表10-7,选齿宽系数=1;查表10-6,得弹性影响系数=189.8,查图10-21d,查得小齿轮接触疲劳强度极限为MPa;大齿轮接触疲劳强度极限为MPa。计算应力循环: (5.12)输入轴转速工作时间137.7r/min=10000h双向转动,取=2代入式(5.12)得:=1.65108次=4.96108次 查图10-19,得接触疲劳寿命系数1.15,1.26;计算接触疲劳许用应力:取安全系数S=1,则=690MPa, =693MPa计算设计公式中代入中较小值,得5.43mm计算小齿轮分度圆圆周速度0.17m/s计算齿宽b=5.435mm计算齿宽与齿高之比: b/h (5.13)模数0.22mm齿高=0.5mm代入式(5.13)得: =10.67计算载荷系数 (5.14)查图10-8,由v=0.17m/s,7级精度,得:=1.0查表10-4,得:1.2查表10-2,得:=1.25查表10-3,得:=1.30查图10-13,得:=1.28以上代入式(5.14)得:1.95 按实际载荷系数修正6.21mm (5.15)计算模数m:1.04mm按弯曲强度设计由公式(10-5 ) (5.16)弯曲疲劳寿命系数弯曲疲劳需用应力齿形系数应力校正系数由图10-20c查得小齿轮弯曲疲劳强度极限=500MPa;大齿轮弯曲强度极限=380MPa;由图10-18取弯曲疲劳寿命系数=0.93,=0.97计算载荷系数=1.92计算弯曲疲劳需用应力,取弯曲疲劳安全系数S=1.4,得:=332.1MPa=263.3MPa查取齿形系数,由表10-5得:=2.65;=2.226查取应力校正系数,由表10-5查得:=1.58;=1.764=0.013=0.015大齿轮对应数值大,将以上数值代入得:0.86对比计算结果,由于齿轮模数m的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度的承载能力仅与齿轮直径有关,所以取由弯曲疲劳强度算得的m=0.86,并取圆整为标准值m=1,前面计算得=6.21mm,得小齿轮的齿数:6.217=19几何尺寸计算:分度圆直径 (5.17)将模数、齿数代入式(5.17)得:7mm;19mm中心距 (5.18)将,代入式(5.18)得:16.5mm齿轮宽度 (5.19)由式(5.19)得:=6.25mm;=7.5mm5.2.2 低速级齿轮设计与计算(1) 选定齿轮类型、精度等级、材料与齿数(a) 按已知条件,选用直齿圆柱齿轮传动。 (b)由表10-1小齿轮的材料为40Cr(调质),硬度为280HBS,大齿轮的材料为45钢(调质),硬度为240HBS。(c)选择7级精度,(2)按齿面接触疲劳强度计算试选载荷系数:=1.3小齿轮传递的扭矩为:=17.7Nm查表10-7,选齿宽系数=1查表10-6,得弹性影响系数=189.8;查图10-21d,查得小齿轮接触疲劳强度极限为MPa;大齿轮接触疲劳强度极限为MPa。计算应力循环系数=5.5108次=1.84107次 查图10-19,得接触疲劳寿命系数1.26,1.31;计算接触疲劳许用应力:取安全系数S=1,则:=756MPa, =720.5MPa计算设计公式中代入中较小值,得:7.46mm计算小齿轮分度圆圆周速度0.072m/s计算齿宽b=7.46mm计算齿宽与齿高之比b/h模数0.34mm齿高=0.7mm =10.67计算载荷系数查图10-8,由v=0.07m/s,7级精度,得:=1.0查表10-4,得:1.2查表10-2,得:=1.25查表10-3,得:=1.30查图10-13,得:=1.28所以载荷系数1.95按实际载荷系数修正8.54mm计算模数m1.42mm按弯曲强度设计由式(10-5)得:由图10-20c查得小齿轮弯曲疲劳强度极限=500MPa;大齿轮弯曲强度极限=380MPa;由图10-18取弯曲疲劳寿命系数=0.93,=0.97计算弯曲疲劳需用应力取弯曲疲劳安全系数S=1.4,得:=332.1MPa=263.3MPa计算载荷系数=1.92查取齿形系数。由表10-5得:=2.65;=2.226查取应力校正系数由表10-5查得:=1.58;=1.764=0.013=0.015大齿轮对应数值大将以上数值代入得:0.86对比计算结果,由于齿轮模数m的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度的承载能力仅与齿轮直径有关,所以取由弯曲疲劳强度算得的m=1.21,并取圆整为标准值m=1.5,前面计算得=29.85mm,得小齿轮的齿数24.6725=75几何尺寸计算分度圆直径9.37mm;28.2mm中心距=18.75mm齿轮宽度=9.37mm;=10.7mm5.3 轴的设计与计算5.3.1 输入轴的设计与计算(1) 求输入轴上的功率、转速、扭矩0.456kW137.7r/min6.27Nm(2) 初估轴直径 (5.20)选取轴的材料为45钢,调质处理,查表11-3,取,并将数据代入式(5.20)得: =4.25mm (3) 轴的结构设计输入轴的最小直径与先前计算齿轮直径相差很少,所以做成齿轮轴。(4) 求轴上支反力与弯矩水平方向: ; (5.21)垂直方向: ; (5.22) 对锥齿轮:,(5.23) 对直齿轮:,(5.24) 将输入轴参数代入式(5.24)得:538.2N,138.5N501.6N,182.6N代入得:408.6N,867.2N514.8N ,558.9N作出输入轴水平方向及垂直方向的弯矩图3.6: 图5.6 输入轴的受力分析图 从输入轴的结构图和受力情况分析得到截面II是输入轴的危险截面,计算结果如表5.4。表5.4 截面处的弯矩载荷水平面H垂直面V支反力408.6N867.2N514.8N558.9N弯矩44.8Nm0.7Nm总弯矩44.8Nm扭矩6.27Nm5) 按弯扭合成应力校核轴的强度 (5.25)式中:轴的计算应力轴受得弯矩轴所受的扭矩轴的抗弯截面系数 (5.26)校核轴上承受最大计算弯矩的截面处的强度,取1,将各数值代入式(5.25)、(5.26)得:7.66MPa轴的材料为45钢,查表11-1,。因此,故安全。5.3.2 中间轴的设计与计算(1) 求输入轴上的功率、转速、扭矩0.429kW45.9r/min17.7Nm(2) 初估轴直径选取轴的材料为45钢,调质处理,查表11-3,取,得:6.25mm(3) 轴的结构设计中间轴的直径与小齿轮分度圆直径相差很少,所以做成锥齿轮轴。轴的结构尺寸如图3.7。图5.7 中间轴结构尺寸简图(4) 求轴上支反力与弯矩水平方向:; (5.27)垂直方向: ;(5.28) 对直齿轮:,将输入轴参数代入得:472N,171.8N944N,343.6N代入得:35.8N,436.2N13N,158.7N作出中间轴水平方向及垂直方向的弯矩图: 图5.8 中间轴的受力分析图 从轴的结构图和受力情况分析得到截面II是轴的危险截面,计算结果如表5.5。表5.5 截面处的弯矩载荷水平面H垂直面V支反力35.8N436.2N13N158.7N弯矩31.7Nm11.51Nm总弯矩33.7Nm扭矩17.7Nm(5) 按弯扭合成应力校核轴的强度校核轴上承受最大计算弯矩的截面处的强度2.01MPa轴的材料为45钢,查表11-1,60MPa。因此,故安全。5.3.3 输出轴的设计与计算 (1) 求输出轴上的功率、转速、扭矩0.404kW15.3r/min49.85Nm(2) 初估轴直径选取轴的材料为45钢,调质处理,查表11-3,取,得:8.25mm(3) 轴的结构设计轴的结构尺寸,输出轴的直径与齿轮直径相差很少,所以做成锥齿轮轴。(4) 求轴上支反力与弯矩水平方向:; (5.29)垂直方向: ;(5.30)对直齿轮:,将输入轴参数代入得:886.2N,322.6N代入得:1364.4N,478.1N496.6N,174N作出输出轴水平方向及垂直方向的弯矩图5.10:图5.10 输出轴的受力分析图 从轴的结构图和受力情况分析得到轴的危险截面,计算结果如表3.7。表5.7 截面处的弯矩载荷水平面H垂直面V支反力13
展开阅读全文