资源描述
水塔水位控制设计摘 要随着我国社会经济的发展,住房制度改革的不断深入,人们生活水平的不断提高,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活和工作,也直接体现了小区物业管理水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水等供水方式普遍不同程度的存在效率低、可靠性差、自动化程度不高等缺点,难以满足当前经济生活的需要。水塔水位控制系统是我国住宅小区广泛应用的供水系统的传统的控制方式存在控制精度低、能耗大的缺点。在水资源日益匮乏的今天,节约用水、提高水资源的利用率就显得十分必要。传统的水塔水位控制为粗放式的,基本没有对水泵的合理控制且多为人为控制工作强度大、危险。所以除了浪费电能外还造成了人力资源的浪费。采用新型的PLC控制供水方式与过去旧的控制方式相比在运行中的经济性、可靠性、稳定性、等方面有显著优势,特别是在提倡低碳的情况下有很好的节能效果,且由于PLC强大的扩展性可以适应今后城市供水建设的。关键词 PLC 水位 控制 目 录摘要.(1)前言.(2)第一章 水塔水位的介绍.(3)1.1 水塔水位PLC控制系统基本原理.(3)1.2 水泵的概述 .(3)1.3传感器的概述. (4)第二章 可编程控制器. (7) 2.1 基础知识简介. (7) 2.2 可编程控制器概述. (7)2.3 可编程控制器的工作原理. (8)第三章 可编程序控制器分类与基本结构.(10)3.1可编程序控制器的结构分类.(11)3.2 FX系列可编程控制器的硬件构成. (11)3.3输入、输出接口电路.(11)3.4输入输出继电器.(13)第四章 系统程序设计. (15)4.1 控制要求. (15)4.2 输入输出地址表.(16)4.3 外部接线图.(17)4.4 流程图.(18)4.5 梯形图. (19)结束语. (21)参考文献 .(22)前 言在工业生产中,电流、电压、温度、压力、液位、流量、和开关量等都是常用的主要被控参数。其中,水位控制越来越重要。在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。因此给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格的水质是对给水系统提出的基本要求。就目前而言,多数工业、生活供水系统都采用水塔、层顶水箱等作为基本储水设备,由一级或二级水泵从地下市政水管补给。传统的控制方式存在控制精度低、能耗大、可靠性差等缺点。可编程控制器PLC是专门为工业环境应用而设计的数字运算操作的电子装置。鉴于其种种优点,目前水位控制的方式被PLC控制取代。同时,又有PID控制技术的发展,因此,如何建立一个可靠安全、又易于维护的给水系统是值得我们研究的课题。 在工农业生产以及日常生活应用中,常常会需要对容器中的液位水位,进行自动控制。比如自动控制水塔、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水控制、自动电热水器、电开水机的自动进水控制等。虽然各种水位控制的技术要求不同精度不同。但其原理都大同小异。特别是在实际操作系统中、稳定、可靠是控制系统的基本要求。因此如何设计一个精度高、稳定性好的水位控制系统就显得日益重要。采用PLC控制技术能很好的解决以上问题使水位控制在要求的位置。第一章 水塔水位的介绍1.1水塔水位PLC控制系统基本原理本文所设置的水塔水位控制系统由水位传感器,一台PLC和水泵以及若干部件组成。安装于水塔上的传感器将水塔的水位转化成1-5伏的电信号,电信号到达PLC将控制控制水泵的开关。水池水位自动控制系统由PLC核心控制部件高低位水池的水位检测电路高低水位信号传送给PLC水泵电动机控制电路 PLC 控制启停。如下图整个系统由水位传感器,一台PLC和水泵以及若干部件组成。安装于水塔上的传感器将水塔的水位转化成1-5伏的电信号电信号到达PLC将控制控制水泵的开关。水箱水位自动控制系统由PLC核心控制部件高低位水箱的水位检测电路高低水位信号传送给PLC水泵电动机控制电路 PLC 控制启停及主备切换。 PLC水塔水位检测系统水泵及指示灯 图1-1 基于PLC的供水系统原理框图 在水塔水位检测系统中通过液位传感器将水位信号转换为电信号输入PLC中在通过PLC控制水泵的启动或关闭。在系统运行中当水为低于最低值时PLC将启动水泵向水塔中加水当水塔中的水达到最高值时PLC使水泵停止运转即水泵停止向水塔供水。等到水塔水位再次达到控制最低水位时 系统再次重复这个过程。 图1-1 1.2 水泵的概述泵的种类繁多,有不同的结构特点和使用范围,根据工作原理可分成三类:叶片泵、容积泵、喷射泵。叶片泵是利用叶轮的叶片来输送液体的,如离心泵、混流泵、轴流泵和旋涡泵等。在此次的水位控制系统中,采用了ISG系列的单级单吸立失管道离心泵,如图1-2所示。图1-2 ISG系列单级单吸立式管道离心泵ISG系列单级单吸立式管道离心泵,是上海虹兴泵业制造有限公司科技人员联合国内水泵专家选用优秀水力模型,采用IS型离心泵之性能参数,在一般立式泵的基础上进行巧妙组合设计而成。同时根据使用温度、介质等不同在ISG型基础上进行巧妙组合设计而成。同时根据使用温度、介质等不同在ISG型基础上派出适用热水、高温、腐蚀性化工泵、油泵。该系列产品具有高效节能、噪音低、性能可靠等优点。1.2.1离心泵的主要部件离心泵主要部件有叶轮、泵壳和轴封装置。(1) 叶轮叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。叶轮一般有612片后弯叶片。叶轮有开式、半闭式和闭式三种。开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类。叶轮有单吸和双吸两种吸液方式。(2) 泵壳作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。泵壳多做成蜗壳形,故又称蜗壳。由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。(3)轴封装置作用是防止泵壳内液体沿轴漏出或外界空气漏入泵壳内。常用轴封装置有填料密封和机械密封两种。填料一般用浸油或涂有石墨的石棉绳。机械密封主要的是靠装在轴上的动环与固定在泵壳上的静环之间端面作相对运动而达到密封的目的。12.2 离心泵的工作原理叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。泵壳中央有一液体吸入4与吸入管5连接。液体经底阀6和吸入管进入泵内。泵壳上的液体排出口8与排出管9连接,如图1-3。图1-3离心泵装置简图在泵启动前,泵壳内灌满被输送的液体;启动后,启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。1.2.3气缚现象当泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力。从而,贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵不能输送液体,此种现象称为“气缚现象”。为了使泵内充满液体,通常在吸入管底部安装一带滤网的底阀,该底阀为止逆阀,滤网的作用是防止固体物质进入泵内损坏叶轮或防碍泵的正常操作。1.3传感器的概述此次水位控制系统中选传感器作为检测设备。传感器通常是指按一定规律将所感受的被测非电量(包括物理量、化学量、生物量等)转换成便于处理与传输的电量(少数为其他物理量,如光信号)的器件或装置。传感器包含两个必不可少的内容:一是拾取信息,二是将拾取到的信息进行变换,使之变成为一种与被测量有确定函数关系且便于处理与传输的物理量,多数为电量。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。1.3.1传感器的特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。1.3.2传感器的分类 液位传感器有很多种,有侧装式磁翻柱,顶装式磁翻柱,浮球连杆式,静压式液位计,浮球液位开关等。如图1-4所示。本课题运用的是浮子液位传感器。UHZ/Q型系列浮子液位计适用工业生产中各种高位、低位容器中各种液体介质的液面位置的测量。它的接收部份采用优质不锈钢材料,利用干簧受磁性吸合的原理,把液面位置的变化转变为电信号的变化,并可附加液位计上下越位报警器及远距离信号变送器,将液位变化转换成4-20mA直流信号,与组合仪表配套使用,达到液位的远距离指示检测与监控。本课题中水池选用长度5m的UHZ/Q型系列浮子液位计水塔选用3m的UHZ/Q型系列浮子液位计。 图1-4 浮子液位传感器1.3.4 传感器的组成一般是由敏感元件、转换元件组成。敏感元件是指传感器中能直接感受或响应被测非电量,并将其送到“转换元件”转换成电量的部分。转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。因为课题用于水中因此选用液位传感器,利用液体浮力测液位的原理应用广泛,靠浮子随液面升降的位移反映液位变化的,属于恒浮力式;靠液面升降对物体浮力改变反映液位的属于变浮式力。自由状态下的浮子能跟随液面升降,这是人尽皆知的水涨船高规律。当浮子的升降程度到达设定的刻度时,行程开关开始工作。并将采集到的信号传送给PLC。浮子式水位传感器是选用JZB系列绝对编码器,配用线轮、不锈钢绳、重锤、防浪锤和浮子等构成。此传感器安装在测井口上方,连接浮子和重锤的测绳挂在挂轮上。当水位变化时浮子随之上升或F降,测绳便带动线轮作旋转运动,传感器输出与水位相应的编码数字量。适用于水库、水电站、水文站、水厂、江河、湖泊等水位测量。传感器以绝对编码的方式,输出并行循环参码供仪表采集,配以变送装置可输出4-20mA或RS485供PLC或微机采集,该传感器性能稳定可靠,适应性强,具有绝对编码器的突出优点,深受广大水文、水利工程技术人员的好评。1.3.5主要技术参数测量范围: 5m 10m 20mm 40mm 80mm分辨率: 1cm 1mm精度:1cm回差:1cm使用环境:温度-5-+50相对湿度95%(RH40) 第二章 可编程控制器2.1基础知识简介可编程控制器(Programmable Logic Controller)于1969年面世,发展到现在已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,成为一种最重要、最普及、应用场合最多的工业控制器。PLC是20世纪70年代以来,在集成电路、计算机技术基础上发展起来的一种新型工业控制设备。由于它具有功能强、可靠性高、配置灵活、使用方便以及体积小、重量轻等优点,国外已广泛应用于自动化控制的 各个领域,并已成为实现工业生产自动化的支柱产品。近年来,国内在PLC技术与产品开发应用方面的发展也很快,除许多从国外引进的设备、自动化生产线外,国产的机床设备已越来越快地采用PLC控制系统取代传统的继电接触控制系统。国产化的小型PLC性能也基本达到国外同类产品的技术指标。因此,作为一名电气工程技术人员,必须掌握PLC及其控制系统的基本原理与应用技术,以适应当前电气控制技术的发展需要。在一般住宅或大楼楼顶常设置水塔或水箱以提供充足的水压供用户使用,另备有地下水槽储存自来水公司提供的水源并给顶楼水塔进水使用。由于当前可编程序控制器(PLC)技术已日渠成熟,因而考虑利用它来实现水塔/水箱供水控制。2.2可编程序控制器概述目前的控制器有很多种,有可编程序控制器、单片机、工业计算机等,而可编程序控制器具有驱动能力好、通信接口不复杂、指令简单、运行可靠等优点,本课题选用三菱可编程序控制器。可编程序控制器(简称PLC)是在继电顺序控制基础上发展起来的以微处理器为核心的通用自动控制装置,PLC是电子技术、计算机技术与继电逻辑自动控制系统相结合的产物。PLC作为自动控制系统中的一个核心部件,要使它能在控制系统中充分发挥其功能,就必须了解PLC的结构、工作原理等。以可编程控制器为核心单元的控制系统称为可编程控制系统。可编程控制系统可分为硬件和软件。PLC的硬件主要由中央处理器(CPU)、存储器、输入单元、输出单元、通信接口、扩展接口电源等部分组成。其中,CPU是PLC的核心,输入单元与输出单元是连接现场输入/输出设备与CPU之间的接口电路,通信接口用于与编程器、上位计算机等外设连接。对于整体式PLC,所有部件都装在同一机壳内,其组成框图如图2-1所示;对于模块式PLC,各部件独立封装成模块,各模块通过总线连接,安装在机架或导轨上,其组成框图如图2-2所示。无论是哪种结构类型的PLC,都可根据用户组需要进行配置与组合。 图2-1整体式组成框图图2-2 模块式组成框图2.3可编程序控制器的工作原理PLC是采用“顺序扫描,不断循环”的方式进行工作的。即在PLC运行时,CPU根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描,如无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束。然后重新返回第一条指令,开始下一轮新的扫描。在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。PLC的一个扫描周期必经输入采样、程序执行和输出刷新三个阶段。PLC在输入采样阶段:首先以扫描方式按顺序将所有暂存在输入锁存器中的输入端子的通断状态或输入数据读入,并将其写入各对应的输入状态寄存器中,即刷新输入。随即关闭输入端口,进入程序执行阶段。PLC在程序执行阶段:按用户程序指令存放的先后顺序扫描执行每条指令,经相应的运算和处理后,其结果再写入输出状态寄存器中,输出状态寄存器中所有的内容随着程序的执行而改变。输出刷新阶段:当所有指令执行完毕,输出状态寄存器的通断状态在输出刷新阶段送至输出锁存器中,并通过一定的方式(继电器、晶体管或晶闸管)输出,驱动相应输出设备工作。第三章 可编程序控制器的分类与基本构成 3.1 可编程控制器的结构分类3.1.1.按硬件的结构类型分类可编程控制器是专门为工业生产环境设计的。为了便于在工业现场安装,便于扩展,方便接线,其结构与普通计算机有很大区别,常见的有单元式、 模块式及叠装式三种结构。3.1.2.按应用规模及功能分类为了适应不同工业生产过程的应用要求,可编程控制器能够处理信号的输入信号数量是不一样的。一般将一路信号称作一个点,将输入点和输出点数的总和称为机器的点。按照点数的多少,可将PLC分为超小(微)、 小 、中 、大 、超大等五种类型。可编程控制器还可以按功能分为低档机 、中档机及高档机。而可编程控制器按功能划分及按点数规模划分是有一定联系的。一般大型 、超大型机都是高档机。3.2 FX系列可编程控制器的硬件构成:1.单片机:PLC中的单片机包含了中央处理器、随机存储器、只读存储器、串行接口SIO、时钟CTC等。FX2系列中大部分都采用表面封装技术的芯片,主板中只含两片超大规模集成电路:一片是通用16位CPU,用于处理一般逻辑指令;另一片是专用逻辑处理器,用于处理高速指令、中断等。2.电源:FX2系列PLC基本单元和扩展单元均采用开关电源。开关电源输出DC5V、DC12V、DC24V三种电压等级的直流电:5V的一路供内部IC用,12V的一路用以驱动输出继电器,24V的一路提供给用户以作传感器的电源。3.通信接口:FX2系列PLC的基本单元带有三个与外部装置相连的通信接口,一个是连接编程器的接口,一个是连接扩展单元或扩展模块的接口,还有一个是连接特殊功能适配器的接口。4.编程器:编程器的主要功能是编写用户程序,并将用户程序送入PLC基本单元的用户存储器中,有些编程器还兼有监控和向主机发出各种命令的功能。3.3 输入、输出接口电路1)输入接口电路:FX2型PLC输入接口电路如图2-3,电路中光耦的输出端设有RC滤波器,这是为防止由于输入点的抖动及信号输入线中混入的噪声引起误动作而设计的,所以输入信号从ONOFF或从OFFON变化时,PLC输入接口电路内部约有10ms的响应滞后。输入接口电路中一个不容忽视的参数是输入灵敏度,也就是输入的动作电流。FX2型PLC的输入电流为7mA,能引起输入动作的最小电流为2.53mA,但为使动作可靠,输入电流必须大于4.5mA,为了保证可靠切断,输入电流必须小于1.5mA。因此,当输入回路中串有二极管或电阻,或者有并联电阻,或有漏电流时应特别注意,以免造成系统误动作。输入端子传感器XCOMCOMDC电源可变程序控制器LED5V24V+24V图3-1 FX2型PLC输入接口电路2)输出接口电路:FX2型的PLC输出接口电路共有三种形式:一种是继电器输出型,一种是晶闸管输出型,一种是晶体管输出型。输出接口电路的隔离方式继电器输出型是利用继电器线圈与输出触点,将PLC内部电路与外部负载电路进行电气隔离;晶闸管输出型是采用光控晶闸管,将PLC的内部电路与外部负载电路进行电气隔离;晶体管输出型是采用光电耦合器将PLC内部电路与输出晶体管进行隔离。无论哪种隔离方式都能有效地防止因外部电路故障而波及到内部电路,保证PLC的输出安全可靠。输出接口电路的主要技术参数响应时间: 响应时间是表示PLC输出器件从ON状态转变为OFF状态,或从OFF状态转变为ON状态所需要的时间。继电器型响应时间最长,从输出继电器的线圈通电或断电到输出触点ON或OFF的响应时间均为10ms;晶闸管型从光控晶闸管获得驱动信号或失去驱动信号到晶闸管完全导通或完全截止的时间在1ms以下;晶体管型从光耦获得驱动信号或失去驱动信号到输出晶体管完全导通或完全截止的时间在0.2ms以下(24V、200mA时)。输出电流:继电器型具有较大的输出电流,一般对电压为AC 250V以下的电路驱动纯电阻负载的能力为2A/点,晶闸管型和晶体管型输出电流都较小。对于感性负载,由于在断开的瞬间会产生较高的自感电势,因此在考虑PLC的输出电流时应留有余地。此外对交流电路中的感性负载应在负载两端并接RC(一般R取120 ,C取0.1)浪涌吸收电路,对直流电路中的感性负载要在负载两端并接续流二极管。开路漏电流: 开路漏电流指PLC输出处于OFF状态时,输出回路中的电流。继电器型输出为OFF时没有漏电流。晶闸管输出型由于在PLC内部与输出晶闸管并联了RC吸收支路,故将引起开路漏电流,此开路漏电流可能使PLC外部所接的小型继电器保持吸合,应加以重视。晶体管输出型开路漏电流一般较小(100以下),一般不会造成输出误动作。3)输出公共端PLC的输出端子有两种接法:一种是输出端无公共端,每一路输出都是各自独立的;另一种是若干路输出构成一组,共用一个公共端,各组的公共端用编号区分如COM1、COM2,各组公共端间相互隔离。对共用一个公共端的同一组输出,必须用同一电压类型和同一电压等级,但不同的公共点组可使用不同的电压类型和电压等级。 除上述开关量输入输出接口电路外,FX2还可通过专用模块进行模拟量输入输出。FX 4AD为专用模拟量输入模块,FX2DA为专用模拟量输出模块。3.4.输入输出继电器PLC的输入端是其内部的输入继电器(X)从外部接收开关信号的端口,输入端与输入继电器之间是经过光电隔离的。由于输入端与输入继电器是一一对应的,所以有多少个输入继电器就有多少个输入端。FX2系列PLC最多有128个输入继电器,故又称128点输入。所有输入继电器只能由输入端接收的外部信号驱动,而不能用程序驱动。输入继电器是一种电子继电器,其常开触点和常闭触点可重复使用无数次,这与普通的电磁继电器不一样。PLC的输出端是输出继电器(Y)向外部负载输出信号的端口。输出继电器的触点分外部输出触点和内部触点两种,外部输出触点(继电器触点、晶闸管、晶体管等输出元件)接到PLC的输出端子上,且只有常开触点。内部触点如同输入继电器一样,其常开和常闭触点可重复使用无数次。输出继电器和输出端子是一一对应的,FX2的输出继电器最多有128个,故又称128点输出。输出继电器是PLC唯一能驱动外部负载的元件。FX2系列PLC的输入输出点数均可扩展至128点(即X0X177,Y0Y177),使用时总点数不可超过256点。FX系列可编程控制器的软件构成:1.系统程序-PLC的系统程序是由制造商编制的用于控制PLC本身运行的程序,它分为管理程序、用户指令解释程序、标准程序模块和系统调用三部分。2.用户程序-用户程序是由用户根据控制的需要而编制的程序,编程语言可以是梯形图、指令语句表及流程图等。用户程序依次存放在监控程序指定的存储空间内。第四章 系统程序设计4.1 控制要求打开电源,首先对水池水位进行水位进行水位检测,当水位低于水池低水位界,S1液位传感器输出信号为1(即S1为ON),水泵M1运转,M1运行指示灯Y3亮,同时定时器也进行定时,4S后,如果S1的输出信号仍为ON,表示水管内没有进水,出现故障,产生报警灯Y2亮且M1停止运行,运行指示灯灭。当水位达到S2位置时,S2液位传感器输出信号为1(即S2为ON),水泵M1停止运行,S2最高指示灯亮,然后检测水塔水位。当水位高于水池低水位时,检测水塔水位是否低于最低水位界,当水塔水位低于水位界时,水塔液位传感器S3输出信号为1(即S3为ON),且S1输出信号为0时(即水池内有蓄水),水泵M2运转抽水,M2运行指示灯亮。当水塔水位高于水塔高水位时(即S4为1)水泵M2停止工作,水泵最高水位指示灯亮,程序回到第一步。水池和水塔的进水也可由手动进行控制。水塔水位控制示意图如4-1所示。4-1 水塔水位控制示意图4.2 I/O输入输出表输入输出功能元件plc地址功能元件Plc地址液位传感器S1X000M1水泵KM1Y000液位传感器S2X001M2水泵KM2Y001液位传感器S3X002报警灯HL1Y002液位传感器S4X003M1运行灯HL2Y003电源启动SB0X004M2运行灯HL3Y004电源关闭SB1X005水池最高位指示灯HL4Y005M1手动开关SB2X006水塔最高位指示灯HL5Y006M2手动开关SB3X007 图 4-2 输入输出地址表4.3接线图4-3 外部接线图 4.4流程图 开始否水池水位低于最低位? 是水位低于水塔最低位?M1水泵运行,进水运行灯Y3亮是延时4SM2水泵运行,进水运行灯Y3亮是M1停止运行,报警水池水位低于最低?否否水位达到水塔最高位?M1水泵继续运行,进水是否水池水位达到最高位?M2停止运行,最高指示灯Y6亮是M1停止运行,最高指示灯Y5亮 4.5 梯形图 结束语在这段时间内,我在指导老师的帮助和指导下,设计并完成了此次毕业设计,在设计的过程中我将所涉及到且学过的理论知识重新输理了一遍,也学习了以前没有学到的知识。在做好理论知识的收集以后再进行实际设计,这样使理论知识能充分的融入到设计中去。所谓实际设计就是编写程序,在反复的推敲和斟酌中,我完成了初步设计,但是还是有些搞不懂。随后我听了老师的建议来设计程序,终于设计出了预期的效果。根据计算出的数据运用到实践中去。感谢我的班主任,他严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;他循循善诱的教导和不拘一格的思路给予我无尽的启迪。感谢我的指导老师,在本次论文设计过程中,老师对该论文从选题,构思到最后定稿的各个环节给予细心指引与教导,使我得以最终完成毕业论文设计。在学习中,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度以及侮人不倦的师者风范是我终生学习的楷模,老师们的高深精湛的造诣与严谨求实的治学精神,将永远激励着我。这5年中还得到众多老师的关心支持和帮助。在此,谨向老师们致以衷心的感谢和崇高的敬意!另外,还要感谢身边的同学们。在毕业设计中每次遇到困难向他们请教时,他们都会给于我热情地帮助,尽自己最大的力量帮助我解决问题,这让我深受感动。同时也使我能够较为顺利地完成本次毕业设计,在此也向他们表示真挚地感谢。最后,再次感谢每一位老师和同学对我的指导和帮助。参考文献1上海市经委节能办公室,上海市机电工业管理局,中国电工技术学会,上海市机工程学会. 风机水泵调速节能手册. 北京:机械工业出版社,1987:10-15.2刘行川. 简明电工手册. 福建:福建科学技术出版社,2003:124-126. 3曾凡奎. 新简明电工手册. 北京:机械工业出版社,2005:36-42.4钱清泉. 新编实用电工手册. 北京:电子科技大学出版社,1996:24-25.5王桂琴. 电工学 . 北京:机械工业出版社,2004:85-94.6中国电子学会敏感技术分会,北京电子学会,北京电子商会传感器分类.传感器与执行器大会. 北京:机械工业出版社,2006:54-59.7电气技师手册编委会.电气技师手册. 福建:福建科学技术出版社,2004:254-258.
展开阅读全文