2020高考数学一轮复习 第七章 立体几何 课时作业42 直线、平面垂直的判定和性质 文.doc

上传人:tian****1990 文档编号:6365592 上传时间:2020-02-24 格式:DOC 页数:5 大小:189.50KB
返回 下载 相关 举报
2020高考数学一轮复习 第七章 立体几何 课时作业42 直线、平面垂直的判定和性质 文.doc_第1页
第1页 / 共5页
2020高考数学一轮复习 第七章 立体几何 课时作业42 直线、平面垂直的判定和性质 文.doc_第2页
第2页 / 共5页
2020高考数学一轮复习 第七章 立体几何 课时作业42 直线、平面垂直的判定和性质 文.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
课时作业42直线、平面垂直的判定和性质 基础达标一、选择题1直线a平面,b,则a与b的关系为()Aab,且a与b相交Bab,且a与b不相交CabDa与b不一定垂直解析:b,b平行于内的某一条直线,设为b,a,且b,ab,ab,但a与b可能相交,也可能异面答案:C2PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是()平面PAB平面PBC;平面PAB平面PAD;平面PAB平面PCD;平面PAB平面PAC.A BC D解析:由PA平面ABCD,BC平面ABCD得PABC,又BCAB,PAABA,则BC平面PAB,又BC平面PBC,得平面PAB平面PBC,故正确,同理可证正确答案:A32019成都诊断性检测已知m,n是空间中两条不同的直线,为空间中两个互相垂直的平面,则下列命题正确的是()A若m,则mB若m,n,则mnC若m,m,则mD若m,nm,则n解析:选项A中,若m,则直线m和平面可能垂直,也可能平行或相交,故选项A不正确;选项B中,直线m与直线n的关系不确定,可能平行,也可能相交或异面,故选项B不正确;选项C中,若m,则m或m,又m,故m,选项C正确;选项D中,缺少条件n,故选项D不正确,故选C.答案:C42017全国卷在正方体ABCD A1B1C1D1中,E为棱CD的中点,则()AA1EDC1 BA1EBDCA1EBC1 DA1EAC解析: A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直, B,D错; A1E在平面BCC1B1上的投影为B1C,且B1CBC1, A1EBC1,故C正确;(证明:由条件易知,BC1B1C,BC1CE,又CEB1CC, BC1平面CEA1B1.又A1E平面CEA1B1, A1EBC1) A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错故选C.答案:C52019惠州调研设l,m,n为三条不同的直线,为一个平面,则下列命题中正确的个数是()若l,则l与相交;若m,n,lm,ln,则l;若lm,mn,l,则n;若lm,m,n,则ln.A1 B2C3 D4解析:对于,若l,则l与不可能平行,l也不可能在内,所以l与相交,正确;对于,若m,n,lm,ln,则有可能是l,故错误;对于,若lm,mn,则ln,又l,所以n,故正确;对于,因为m,n,所以mn,又lm,所以ln,故正确选C.答案:C二、填空题6如图,BAC90,PC平面ABC,则在ABC,PAC的边所在的直线中,与PC垂直的直线有_;与AP垂直的直线有_解析:PC平面ABC,PC垂直于直线AB,BC,AC;ABAC,ABPC,ACPCC,AB平面PAC,ABAP.与AP垂直的直线是AB.答案:AB,BC,ACAB7假设平面平面EF,AB,CD,垂足分别为B,D,如果增加一个条件,就能推出BDEF,现有下面四个条件:AC;AC;AC与BD在内的射影在同一条直线上;ACEF.其中能成为增加条件的是_(把你认为正确的条件序号都填上)解析:如果AB与CD在一个平面内,可以推出EF垂直于该平面,又BD在该平面内,所以BDEF.故要得到BDEF,只需AB,CD在一个平面内即可,只有能保证这一条件答案:8如图,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD(只要填写一个你认为正确的条件即可)解析:PC在底面ABCD上的射影为AC,且ACBD,BDPC.当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD.答案:DMPC(或BMPC)三、解答题92019陕西质量检测如图,在三棱柱ABCA1B1C1中,AA1AB,ABC90,侧面A1ABB1底面ABC.(1)求证:AB1平面A1BC;(2)若AC5,BC3,A1AB60,求三棱柱ABCA1B1C1的体积解析:(1)证明:在侧面A1ABB1中,A1AAB,四边形A1ABB1为菱形,AB1A1B.侧面A1ABB1底面ABC,ABC90,CB平面A1ABB1.AB1平面A1ABB1,CBAB1.又A1BBCB,AB1平面A1BC.(2)解法一如图,过A1作A1DAB,垂足为D.平面ABC平面A1ABB1,平面ABC平面A1ABB1AB,A1D平面ABC,A1D为三棱柱ABCA1B1C1的高BC3,AC5,ABC90,AB4,又AA1AB,A1AB60,A1AB为等边三角形,A1DAB2.VABCA1B1C1SABCA1D43212.解法二在ABC中,由AC5,BC3,ABC90,可得AB4.又A1AAB,A1AB60,ABA1是边长为4的等边三角形,SABA1424.由(1)知BC平面ABA1,VCABA1SABA1BC434.设三棱柱ABCA1B1C1的高为h,则VABCA1B1C1SABCh33VA1ABC3VCABA13412.102018北京卷,18如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PAPD,E,F分别为AD,PB的中点(1)求证:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD.解析:(1)因为PAPD,E为AD的中点,所以PEAD.因为底面ABCD为矩形,所以BCAD.所以PEBC.(2)因为底面ABCD为矩形,所以ABAD.又因为平面PAD平面ABCD,所以AB平面PAD.所以ABPD.又因为PAPD,ABPAA,所以PD平面PAB.PD平面PCD,所以平面PAB平面PCD.(3)取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FGBC,FGBC.因为ABCD为矩形,且E为AD的中点,所以DEBC,DEBC.所以DEFG,DEFG.所以四边形DEFG为平行四边形所以EFDG.又因为EF平面PCD,DG平面PCD,所以EF平面PCD.能力挑战11如图,平面五边形ABCDE中,ABCE,且AE2,AEC60,CDED,cosEDC.将CDE沿CE折起,使点D到P的位置,且AP,得到四棱锥PABCE.(1)求证:AP平面ABCE;(2)记平面PAB与平面PCE相交于直线l,求证:ABl.证明:(1)在CDE中,CDED,cosEDC,由余弦定理得CE2.连接AC,AE2,AEC60,AC2.又AP,在PAE中,PA2AE2PE2,即APAE.同理,APAC.而AC平面ABCE,AE平面ABCE,ACAEA,故AP平面ABCE.(2)ABCE,且CE平面PCE,AB平面PCE,AB平面PCE.又平面PAB平面PCEl,ABl.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!