通用版2019版高考化学二轮复习5个解答题之5物质结构与性质鸭含解析.doc

上传人:tian****1990 文档编号:6330191 上传时间:2020-02-23 格式:DOC 页数:47 大小:2.01MB
返回 下载 相关 举报
通用版2019版高考化学二轮复习5个解答题之5物质结构与性质鸭含解析.doc_第1页
第1页 / 共47页
通用版2019版高考化学二轮复习5个解答题之5物质结构与性质鸭含解析.doc_第2页
第2页 / 共47页
通用版2019版高考化学二轮复习5个解答题之5物质结构与性质鸭含解析.doc_第3页
第3页 / 共47页
点击查看更多>>
资源描述
物质结构与性质历年真题集中研究明考情1(2018全国卷)Li是最轻的固体金属,采用Li作为负极材料的电池具有小而轻、能量密度大等优良性能,得到广泛应用。回答下列问题:(1)下列Li原子电子排布图表示的状态中,能量最低和最高的分别为_、_(填标号)。(2)Li与H具有相同的电子构型,r(Li)小于r(H),原因是_。(3)LiAlH4是有机合成中常用的还原剂,LiAlH4中的阴离子空间构型是_、中心原子的杂化形式为_。LiAlH4中,存在_(填标号)。A离子键 B键C键 D氢键(4)Li2O是离子晶体,其晶格能可通过图(a)的BornHaber循环计算得到。可知,Li原子的第一电离能为_kJmol1,O=O键键能为_kJmol1,Li2O晶格能为_kJmol1。(5)Li2O具有反萤石结构,晶胞如图(b)所示。已知晶胞参数为0.466 5 nm,阿伏加德罗常数的值为NA,则Li2O的密度为_gcm3(列出计算式)。把脉考点第(1)问考查核外电子排布规则第(2)问考查离子半径大小比较第(3)问考查离子空间构型、中心原子杂化方式、化学键类型判断第(4)问考查电离能、键能、晶格能的求算第(5)问考查晶胞的相关计算解析:(1)D选项表示基态,为能量最低状态;A、B、C选项均表示激发态,但C选项被激发的电子处于高能级的电子数多,为能量最高状态。(2)Li与H具有相同的电子构型,Li的核电荷数大于H的核电荷数,因此Li的原子核对电子的吸引能力强,即Li半径小于H半径。(3)LiAlH4的阴离子为AlH,AlH中Al的杂化轨道数为4,Al采取sp3杂化,为正四面体构型。LiAlH4是离子化合物,存在离子键,H和Al间形成的是共价单键,为键。(4)由题给信息可知,2 mol Li(g)变为2 mol Li(g)吸收1 040 kJ热量,因此Li原子的第一电离能为520 kJmol1;0.5 mol氧气生成1 mol氧原子吸收249 kJ热量,因此O=O键的键能为498 kJmol1;Li2O的晶格能为2 908 kJmol1。(5)由题给图示可知,Li位于晶胞内部,O位于顶点和面心,因此一个晶胞有8个Li,O原子个数684。因此一个Li2O晶胞的质量 g,一个晶胞的体积为(0.466 5107)3 cm3,即该晶体密度 gcm3。答案:(1)DC(2)Li核电荷数较大(3)正四面体sp3AB(4)5204982 908(5)2(2017全国卷)我国科学家最近成功合成了世界上首个五氮阴离子盐(N5)6(H3O)3(NH4)4Cl(用R代表)。回答下列问题:(1)氮原子价层电子的轨道表达式(电子排布图)为_。(2)元素的基态气态原子得到一个电子形成气态负一价离子时所放出的能量称作第一电子亲和能(E1)。第二周期部分元素的E1变化趋势如图(a)所示,其中除氮元素外,其他元素的E1自左而右依次增大的原因是_;氮元素的E1呈现异常的原因是_。(3)经X射线衍射测得化合物R的晶体结构,其局部结构如图(b)所示。从结构角度分析,R中两种阳离子的相同之处为_,不同之处为_。(填标号)A中心原子的杂化轨道类型B中心原子的价层电子对数C立体结构D共价键类型R中阴离子N中的键总数为_个。分子中的大键可用符号表示,其中m代表参与形成大键的原子数,n代表参与形成大键的电子数(如苯分子中的大键可表示为),则N中的大键应表示为_。图(b)中虚线代表氢键,其表示式为(NH)NHCl、_、_。(4)R的晶体密度为d gcm3,其立方晶胞参数为a nm,晶胞中含有y个(N5)6(H3O)3(NH4)4Cl单元,该单元的相对质量为M,则y的计算表达式为_。把脉考点第(1)问考查核外电子排布第(2)问考查同周期元素变化规律第(3)问考查分子结构与性质第(4)问考查晶胞中粒子数目的计算解析:(1)根据构造原理可知氮原子价电子排布式为2s22p3,根据洪特规则和泡利原理可写出其价电子的轨道表达式。(2)从图(a)可以看出:除N外,同周期元素随核电荷数依次增大,E1逐渐增大,这是因为随原子半径逐渐减小,结合一个电子需要释放出更多的能量;N原子的2p轨道处于半充满状态,不易再结合一个电子,故E1呈现异常。(3)结合图(b)可知:晶体R中两种阳离子为NH和H3O,其中心原子均采取sp3杂化;NH中成键电子对数为4,H3O中含1个孤电子对和3个成键电子对,即中心原子的价层电子对数均为4;两种阳离子中均存在极性键,不存在非极性键。NH和H3O分别为正四面体结构和三角锥形结构,即立体结构不同。从图(b)可以看出:阴离子N呈五元环状结构,其含有的键总数为5个;N中参与形成大键的电子数为6,故可将其中的大键表示为。根据题给表示式可知,除表示出形成氢键的原子外,还要表示出形成氢键的原子所在的原子团和该原子在原子团中的成键情况,因此氢键的表示式还有(H3O)OHN(N)、(NH)NHN(N)。(4)该晶胞的体积为(a107 cm)3,根据M(a107)3d,可求出y或1021。答案:(1) (2)同周期元素随核电荷数依次增大,原子半径逐渐变小,故结合一个电子释放出的能量依次增大N原子的2p轨道为半充满状态,较稳定,故不易结合一个电子(3)ABDC5(H3O)OHN(N)(NH)NHN(N)(4)3.(2016全国卷)砷化镓(GaAs)是优良的半导体材料,可用于制作微型激光器或太阳能电池的材料等。回答下列问题:(1)写出基态As原子的核外电子排布式_。(2)根据元素周期律,原子半径Ga_As,第一电离能Ga_As。(填“大于”或“小于”)(3)AsCl3分子的立体构型为_,其中As的杂化轨道类型为_。(4)GaF3的熔点高于1 000 ,GaCl3的熔点为77.9 ,其原因是_。(5)GaAs的熔点为1 238 ,密度为 gcm3,其晶胞结构如图所示。该晶体的类型为_,Ga与As以_键键合。Ga和As的摩尔质量分别为MGa gmol1和MAs gmol1,原子半径分别为rGa pm和rAs pm,阿伏加德罗常数值为NA,则GaAs晶胞中原子的体积占晶胞体积的百分率为_。把脉考点第(1)问考查核外电子排布式的书写第(2)问考查原子半径和第一电离能大小的比较第(3)问考查分子构型的判断、中心原子杂化类型的判断第(4)问考查晶体类型对物质熔沸点的影响第(5)问考查晶体、化学键类型的判断;原子空间利用率的计算解析:(1)As元素在周期表中处于第A族,位于P元素的下一周期,则基态As原子核外有33个电子,根据核外电子排布规律写出其核外电子排布式:1s22s22p63s23p63d104s24p3或Ar3d104s24p3。(2)同周期主族元素的原子半径随原子序数的递增而逐渐减小,Ga与As在周期表中同位于第四周期,Ga位于第A族,则原子半径:GaAs。Ga、As原子的价电子排布式分别为4s24p1、4s24p3,其中As原子的4p轨道处于半充满的稳定状态,其第一电离能较大,则第一电离能:GaAs。(3)As原子的价电子排布式为4s24p3,最外层有5个电子,则AsCl3分子中As原子形成3个AsCl键,且含有1对未成键的孤对电子,则As的杂化轨道类型为sp3杂化,AsCl3分子的立体构型为三角锥形。(4)GaF3的熔点高于1 000 ,GaCl3的熔点为77.9 ,其原因是GaF3是离子晶体,GaCl3是分子晶体,而离子晶体的熔点高于分子晶体。(5)GaAs的熔点为1 238 ,其熔点较高,据此推知GaAs为原子晶体,Ga与As原子之间以共价键键合。分析GaAs的晶胞结构,4个Ga原子处于晶胞体内,8个As原子处于晶胞的顶点、6个As原子处于晶胞的面心,结合“均摊法”计算可知,每个晶胞中含有4个Ga原子,含有As原子个数为864(个),Ga和As的原子半径分别为rGapmrGa1010cm,rAspmrAs1010 cm,则原子的总体积为V原子4(rGa1010cm)3(rAs1010cm)31030(rr)cm3。又知Ga和As的摩尔质量分别为MGa gmol1和MAs gmol1,晶胞的密度为 gcm3,则晶胞的体积为V晶胞 cm3,故GaAs晶胞中原子的体积占晶胞体积的百分率为100%100%100%。答案:(1)1s22s22p63s23p63d104s24p3(或Ar3d104s24p3)(2)大于小于(3)三角锥形sp3(4)GaF3为离子晶体,GaCl3为分子晶体(5)原子晶体共价100%物质结构与性质为选做题,做为“拼盘”命制的题型,各小题之间相对独立,主要考查原子结构与性质、分子结构与性质、晶体结构与性质。(1)在原子结构部分主要命题点有核外电子排布式或排布图的书写,电离能、电负性大小的比较与判断,电子亲和能的变化规律。(2)在分子结构部分主要命题点有化学键类型的判断,分子构型的判断,中心原子杂化方式的判断。(3)在晶体结构部分主要命题点有晶体类型的判断,晶体熔沸点的判断,晶体结构的计算等。 高考题点逐一研究清盲点该选考大题由题头(介绍题目背景或物质结构知识,元素推断信息)和设问(拼盘式设问物质结构相关主干知识)两部分组成;解题的关键是先确定考查元素在周期表中的相对位置,再联想变化规律和特殊性质,根据题设要求规范回答即可。命题点一原子结构与性质1能层与能级(1)能层、能级和最多容纳电子数之间的关系能层(n)一二三四五六七符号KLMNOPQ能级1s2s2p3s3p3d4s4p4d4f5s最多容纳的电子数226261026101422818322n2电子离核远近近远电子能量高低低高(2)常见原子轨道电子云轮廓原子轨道电子云轮廓形状轨道个数s球形1p哑铃形3(px,py,pz)2核外电子排布(1)牢记基态原子核外电子排布的三规律能量最低原理原子核外电子总是先占有能量最低的原子轨道,即1s2s2p3s3p4s3d4p5s4d5p6s泡利原理每个原子轨道上最多只容纳2个自旋状态相反的电子洪特规则当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,而且自旋状态相同(2)明确表示基态原子核外电子排布的四方法表示方法举例电子排布式Cr:1s22s22p63s23p63d54s1简化表示式Cu:Ar3d104s1价电子排布式Fe:3d64s2电子排布图(或轨道表示式)(3)防范核外电子排布常见错误电子排布式a3d、4s书写顺序混乱。如b违背洪特规则特例。如电子排布图错误类型错因剖析改正违背能量最低原理违背泡利原理违背洪特规则违背洪特规则(4)巧判未成对电子数的两方法根据电子排布式判断设电子排布式中未充满电子的能级的电子数为n,该能级的原子轨道数为m,则nm时,未成对电子数为n;nm时,未成对电子数为2mn。如氯原子的电子排布式为1s22s22p63s23p5,未充满电子的能级为3p能级,有3个原子轨道,填充的电子数为5,所以未成对电子数为2351;Cr原子的电子排布式为1s22s22p63s23p63d54s1,未充满电子的能级为3d能级和4s能级,分别有5、1个原子轨道,填充的电子数分别为5、1,所以未成对电子数为6。根据电子排布图判断电子排布图能够直观地表示未成对电子数,即单独占据一个方框的箭头的个数。3电离能、电负性(1)元素第一电离能的周期性变化规律一般规律同一周期,随着原子序数的增加,元素的第一电离能呈现增大的趋势,稀有气体元素的第一电离能最大,碱金属元素的第一电离能最小;同一主族,随着电子层数的增加,元素的第一电离能逐渐减小特殊情况第一电离能的变化与元素原子的核外电子排布有关。通常情况下,当原子核外电子排布在能量相等的轨道上形成全空(p0、d0、f0)、半满(p3、d5、f7)和全满(p6、d10、f14)结构时,原子的能量较低,该元素具有较大的第一电离能(2)电离能、电负性大小判断规律在周期表中,电离能、电负性从左到右逐渐增大,从上往下逐渐减小特性同周期主族元素,第A族(ns2)全充满、A族(np3)半充满,比较稳定,所以其第一电离能大于同周期相邻的第A和A族元素方法常常应用化合价及物质类别判断电负性的大小,如O与Cl的电负性比较:HClO中Cl为1价、O为2价,可知O的电负性大于Cl;Al2O3是离子化合物、AlCl3是共价化合物,可知O的电负性大于Cl(3)电离能、电负性的应用电离能的应用判断元素金属性的强弱电离能越小,金属越容易失去电子,金属性越强;反之越弱判断元素的化合价如果某元素的In1In,则该元素的常见化合价为n,如钠元素I2I1,所以钠元素的化合价为1电负性的应用对点训练1(1)(2018全国卷节选)硫及其化合物有许多用途,相关物质的物理常数如下表所示:H2SS8FeS2SO2SO3H2SO4熔点/85.5115.260075.516.810.3沸点/60.3444.6(分解)10.045.0337.0则基态Fe原子价层电子的电子排布图(轨道表达式)为_,基态S原子电子占据最高能级的电子云轮廓图为_形。(2)(2018全国卷节选)锌在工业中有重要作用,也是人体必需的微量元素。Zn原子核外电子排布式为_。黄铜是人类最早使用的合金之一,主要由Zn和Cu组成。第一电离能I1(Zn)_I1(Cu)(填“大于”或“小于”)。原因是_。(3)(2017全国卷节选)钾和碘的相关化合物在化工、医药、材料等领域有着广泛的应用。回答下列问题:元素K的焰色反应呈紫红色,其中紫色对应的辐射波长为_ nm(填标号)。A404.4B553.5C589.2 D670.8E766.5基态K原子中,核外电子占据最高能层的符号是_,占据该能层电子的电子云轮廓图形状为_。K和Cr属于同一周期,且核外最外层电子构型相同,但金属K的熔点、沸点等都比金属Cr低,原因是_。(4)(2017全国卷节选)研究发现,在CO2低压合成甲醇反应(CO23H2=CH3OHH2O)中,Co氧化物负载的Mn氧化物纳米粒子催化剂具有高活性,显示出良好的应用前景。Co基态原子核外电子排布式为_。元素Mn与O中,第一电离能较大的是_,基态原子核外未成对电子数较多的是_。(5)(2016全国卷节选)锗(Ge)是典型的半导体元素,在电子、材料等领域应用广泛。基态Ge原子的核外电子排布式为Ar_,有_个未成对电子。光催化还原CO2制备CH4反应中,带状纳米Zn2GeO4是该反应的良好催化剂。Zn、Ge、O电负性由大至小的顺序是_。(6)(2016全国卷节选)镍元素基态原子的电子排布式为_,3d能级上的未成对电子数为_。单质铜及镍都是由_键形成的晶体;元素铜与镍的第二电离能分别为:ICu1 958 kJmol1、INi1 753 kJmol1,ICuINi的原因是_。解析:(1)基态Fe原子的核外电子排布式为1s22s22p63s23p63d64s2,因此其价层电子的电子排布图为 ;基态S原子的核外电子排布式为1s22s22p63s23p4,最高能级为3p,其电子云轮廓图为哑铃(纺锤)形。(2)锌的核外有30个电子,因此其核外电子排布式为1s22s22p63s23p63d104s2,也可写作Ar3d104s2。锌的价层电子排布式为3d104s2,为全满稳定结构,较难失去电子,铜的价层电子排布式为3d104s1,较易失去一个电子,因此锌的第一电离能大于铜的第一电离能。(3)当对金属钾或其化合物进行灼烧时,焰色反应显紫红色,紫色光的辐射波长范围为400 nm430 nm,紫色光波长较短(钾原子中的电子吸收较多能量发生跃迁,但处于较高能量轨道的电子不稳定,跃迁到较低能量轨道时放出的能量较多,故放出的光的波长较短)。基态K原子核外有4个能层:K、L、M、N,能量依次增高,处于N层上的1个电子位于s轨道,s电子云轮廓图形状为球形。金属原子半径越小、价电子数越多,金属键越强,其熔沸点越高。(4)根据构造原理可写出Co基态原子核外电子排布式为1s22s22p63s23p63d74s2或Ar3d74s2。O是非金属元素,而Mn是金属元素,前者易得电子而不易失电子,后者则反之,所以O的第一电离能大于Mn的。Mn和O的基态原子核外电子排布式分别为1s22s22p63s23p63d54s2、1s22s22p4,前者的3d轨道中5个电子均未成对,后者的2p轨道中有2个电子未成对,所以Mn的基态原子核外未成对电子数较多。(5)锗元素在周期表的第四周期、第A族,因此核外电子排布式为Ar3d104s24p2,p轨道上的2个电子是未成对电子。Zn和Ge为同周期元素,Ge在Zn的右边,因此Ge的电负性比Zn的强;O为活泼的非金属元素,电负性强于Ge和Zn,因此三者电负性由大至小的顺序为O、Ge、Zn。(6)Ni是28号元素,根据核外电子的排布规律可知,其基态原子的核外电子排布式为1s22s22p63s23p63d84s2。根据洪特规则可知,Ni原子3d能级上8个电子尽可能分占5个不同的轨道,其未成对电子数为2。Cu、Ni均属于金属晶体,它们均是通过金属键形成晶体。因Cu元素基态原子的价层电子排布式为3d104s1,3d能级全充满,较稳定,失去第2个电子较难,因此ICuINi。答案:(1) 哑铃(纺锤)(2)1s22s22p63s23p63d104s2或Ar3d104s2大于Zn核外电子排布为全满稳定结构,较难失电子(3)AN球形K原子半径较大且价电子数较少,金属键较弱(4)1s22s22p63s23p63d74s2或Ar3d74s2OMn(5)3d104s24p22OGeZn(6)1s22s22p63s23p63d84s2或Ar3d84s22金属铜失去的是全充满的3d10电子,镍失去的是4s1电子2(1)Cr3基态核外电子排布式为_。(2)Cu2的电子排布式是_。(3)Si元素基态原子的电子排布式是_。(4)N的基态原子核外电子排布式为_,Cu的基态原子最外层有_个电子。原子半径Al_Si,电负性:N_O。(用“”或“”或“(5)HCO (6)Ga,故A正确;同周期元素从左到右电负性逐渐增大,则电负性:AsGa,故B正确;同周期主族元素从左到右原子半径逐渐减小,故原子半径:AsCB。(4)根据构造原理,X元素基态原子的电子排布式为1s22s22p63s23p63d104s24p3,该元素为33号元素砷,符号是As;Y元素原子的最外层2p轨道上有2个未成对电子,Y可能为O或C,因X与Y可形成化合物X2Y3,故Y为O,其价层电子排布图为根据三种元素的原子序数之和等于42可推出Z为H,XZ3为AsH3,根据得失电子守恒配平化学方程式:As2O36Zn6H2SO4=2AsH36ZnSO43H2O;同主族元素从上到下原子半径逐渐增大,其氢化物中化学键的键长逐渐增大,键能逐渐减小,稳定性逐渐减弱。答案:(1)C3d64s2Cl(2)4s24p4AsSeGe(3)3d104s1NOCAB4s24p231s22s22p63s23p63d104s24p1或Ar3d104s24p1OCB(4)1s22s22p63s23p63d104s24p3As氧As2O36Zn6H2SO4=2AsH36ZnSO43H2O稳定性:NH3PH3AsH3。原因:原子半径NPAs,其氢化物中化学键键长逐渐增大,键能逐渐减小,稳定性逐渐减弱命题点二分子结构与性质1键、键的判断(1)由原子轨道重叠方式判断:“头碰头”重叠为键,“肩并肩”重叠为键。(2)由共价键数目判断:单键为键;双键或三键,其中一个为键,其余为键。(3)由成键轨道类型判断:s轨道形成的共价键全是键;杂化轨道形成的共价键全为键。2中心原子杂化类型和分子空间构型的相互判断分子(A为中心原子)中心原子孤电子对数中心原子杂化方式分子构型示例AB20sp直线形BeCl21sp2V形SO22sp3V形H2OAB30sp2平面三角形BF31sp3三角锥形NH3AB40sp3正四面体形CH43常见等电子体粒子通式价电子总数立体构型CO2、SCN、NO、NAX216e直线形CO、NO、SO3AX324e平面三角形SO2、O3、NOAX218eV形SO、POAX432e正四面体形PO、SO、ClOAX326e三角锥形CO、N2AX10e直线形CH4、NHAX48e正四面体形4非极性分子与极性分子的判断5范德华力、氢键、共价键的比较范德华力氢键共价键概念分子间普遍存在的一种相互作用力,但不是化学键已经与电负性很大的原子(N、O、F)形成共价键的氢原子与另一个电负性很大的原子(N、O、F)之间的作用力原子间通过共用电子对形成的化学键存在范围分子或原子(稀有气体)之间氢原子与氟、氮、氧原子(分子内、分子间)相邻原子间特征无方向性、无饱和性有方向性、有饱和性有方向性、有饱和性强度比较共价键氢键范德华力影响强度的因素随着分子极性和相对分子质量的增大而增大组成和结构相似的物质,相对分子质量越大,范德华力越大对于AHB,A、B的电负性越大,B原子的半径越小,氢键键能越大成键原子半径越小,键长越短,键能越大,共价键越稳定对物质性质的影响影响物质的熔沸点、溶解度等物理性质组成和结构相似的物质,随相对分子质量的增大,物质的熔沸点升高分子间氢键的存在,使物质的熔沸点升高,在水中的溶解度增大影响分子的稳定性,共价键键能越大,分子稳定性越强影响原子晶体的熔沸点、硬度对点训练1(1)(2018全国卷节选)硫及其化合物有许多用途,相关物质的物理常数如下表所示:H2SS8FeS2SO2SO3H2SO4熔点/85.5115.2600(分解)75.516.810.3沸点/60.3444.610.045.0337.0根据价层电子对互斥理论,H2S、SO2、SO3的气态分子中,中心原子价层电子对数不同于其他分子的是_。气态三氧化硫以单分子形式存在,其分子的立体构型为_形,其中共价键的类型有_种;固体三氧化硫中存在如图所示的三聚分子,该分子中S原子的杂化轨道类型为_。(2)(2018全国卷节选)锌在工业中有重要作用,也是人体必需的微量元素。ZnF2具有较高的熔点(872 ),其化学键类型是_;ZnF2不溶于有机溶剂而ZnCl2、ZnBr2、ZnI2能够溶于乙醇、乙醚等有机溶剂,原因是_。中华本草等中医典籍中,记载了炉甘石(ZnCO3)入药,可用于治疗皮肤炎症或表面创伤。ZnCO3中,阴离子空间构型为_,C原子的杂化形式为_。(3)(2017全国卷节选) X射线衍射测定等发现,I3AsF6中存在I离子。I离子的几何构型为_,中心原子的杂化形式为_。(4)(2017全国卷节选)研究发现,在CO2低压合成甲醇反应(CO23H2=CH3OHH2O)中,Co氧化物负载的Mn氧化物纳米粒子催化剂具有高活性,显示出良好的应用前景。CO2和CH3OH分子中C原子的杂化形式分别为_和_。在CO2低压合成甲醇反应所涉及的4种物质中,沸点从高到低的顺序为_,原因是_。硝酸锰是制备上述反应催化剂的原料,Mn(NO3)2中的化学键除了键外,还存在_。(5)(2016全国卷节选)Ge与C是同族元素,C原子之间可以形成双键、三键,但Ge原子之间难以形成双键或三键。从原子结构角度分析,原因是_。比较下列锗卤化物的熔点和沸点,分析其变化规律及原因_。GeCl4GeBr4GeI4熔点/49.526146沸点/83.1186约400Ge单晶具有金刚石型结构,其中Ge原子的杂化方式为_,微粒之间存在的作用力是_。(6)(2016全国卷节选)硫酸镍溶于氨水形成Ni(NH3)6SO4蓝色溶液。Ni(NH3)6SO4中阴离子的立体构型是_。在Ni(NH3)62中Ni2与NH3之间形成的化学键称为_,提供孤电子对的成键原子是_。氨的沸点_(填“高于”或“低于”)膦(PH3),原因是_;氨是_分子(填“极性”或“非极性”),中心原子的轨道杂化类型为_。解析:(1)根据价层电子对互斥理论可知,H2S、SO2、SO3三种分子中S原子的价层电子对数分别为4、3、3,因此H2S中S原子价层电子对数不同于其他两种分子。SO3的中心原子为S,中心原子的孤电子对数(623)/20,中心原子结合3个氧原子,结合每个O原子有且只能有一个键,所以S形成3个键,S的价层电子对数为033,S为sp2杂化,根据sp2杂化轨道构型可知,SO3为平面形分子,符合形成大键条件,可形成4中心6电子大键,因此有两种共价键类型。如题图所示的三聚分子中每个S原子与4个O原子结合,形成正四面体结构,S原子的杂化轨道类型为sp3。(2)由ZnF2的熔点为872 可知,ZnF2应为离子晶体,因此化学键类型为离子键。ZnF2为离子化合物,极性较大,不溶于有机溶剂;ZnCl2、ZnBr2、ZnI2的化学键以共价键为主,极性较小,能够溶于有机溶剂。C原子价层电子对数n(4302)/23,因此C原子为sp2杂化,CO的空间构型为平面三角形。(3)I中I原子为中心原子,则其孤电子对数为(712)2,且其形成了2个键,中心原子采取sp3杂化,I空间构型为V形结构。(4)CO2中C的价层电子对数为2,故为sp杂化;CH3OH分子中C的价层电子对数为4,故为sp3杂化。水和甲醇均为极性分子,常温常压下两种物质均呈液态;二氧化碳和氢气均为非极性分子,常温常压下两种物质均呈气态。由于水分子中的2个氢原子都能参与氢键的形成,而甲醇分子中只有羟基上的氢原子能够形成氢键,所以水中的氢键比甲醇多,则水的沸点高于甲醇的沸点。二氧化碳和氢气都属于分子晶体,但由于二氧化碳的相对分子质量大于氢气,所以二氧化碳的沸点高于氢气的沸点。Mn(NO3)2是离子化合物,存在离子键;此外在NO中,3个O原子和中心原子N之间还形成一个4中心6电子的大键(键),所以Mn(NO3)2中的化学键有键、键和离子键。(5)锗虽然与碳为同族元素,但比碳多了两个电子层,因此锗的原子半径大,原子间形成的单键较长,pp轨道“肩并肩”重叠程度很小或几乎不能重叠,难以形成键。由锗卤化物的熔沸点由GeCl4到GeI4呈增大的趋势且它们的熔沸点较低,可判断它们均为分子晶体,而相同类型的分子晶体,其熔沸点取决于相对分子质量的大小,因为相对分子质量越大,分子间的作用力就越大,熔沸点就越高。Ge单晶为金刚石型结构,金刚石中碳原子的杂化方式为sp3,因此Ge原子的杂化方式也为sp3。微粒之间存在的作用力为共价键。(6)SO中,S原子的价层电子对数为4,成键电子对数为4,故SO的立体构型为正四面体形。Ni(NH3)62中,由于Ni2具有空轨道,而NH3中N原子含有孤电子对,两者可通过配位键形成配离子。由于NH3分子间可形成氢键,故NH3的沸点高于PH3。NH3分子中,N原子形成3个键,且有1个孤电子对,N原子的轨道杂化类型为sp3,立体构型为三角锥形。由于空间结构不对称,NH3属于极性分子。答案:(1)H2S平面三角2sp3(2)离子键ZnF2为离子化合物,ZnCl2、ZnBr2、ZnI2的化学键以共价键为主,极性较小平面三角形sp2(3)V形sp3(4)spsp3H2OCH3OHCO2H2H2O与CH3OH均为极性分子,H2O中氢键比甲醇多;CO2与H2均为非极性分子,CO2相对分子质量较大,范德华力较大离子键和键(键)(5)Ge原子半径大,原子间形成的单键较长,pp轨道“肩并肩”重叠程度很小或几乎不能重叠,难以形成键GeCl4、GeBr4、GeI4的熔、沸点依次增高。原因是分子结构相似,相对分子质量依次增大,分子间相互作用力逐渐增强sp3共价键(6)正四面体形配位键N高于NH3分子间可形成氢键极性sp32(1)丙酮()分子中碳原子轨道的杂化类型是_,1 mol丙酮分子中含有键的数目为_。乙醇的沸点高于丙酮,这是因为_。(2)碳的一种单质的结构如图a所示。该单质的晶体类型为_,原子间存在的共价键类型有_,碳原子的杂化轨道类型为_。SiCl4分子的中心原子的价层电子对数为_,分子的立体构型为_,属于_分子(填“极性”或“非极性”)。四卤化硅SiX4的沸点和二卤化铅PbX2的熔点如图b所示。.SiX4的沸点依F、Cl、Br、I次序升高的原因是_。.结合SiX4的沸点和PbX2的熔点的变化规律,可推断:依F、Cl、Br、I次序,PbX2中的化学键的离子性_、共价性_。(填“增强”“不变”或“减弱”)(3)Zn(CN)42在水溶液中与HCHO发生如下反应:4HCHOZn(CN)424H4H2O=Zn(H2O)424HOCH2CN1 mol HCHO分子中含有键的数目为_mol。HOCH2CN分子中碳原子轨道的杂化类型为_。与H2O分子互为等电子体的阴离子为_。Zn(CN)42中Zn2与CN的C原子形成配位键。不考虑空间构型,Zn(CN)42的结构可用示意图表示为_。(4)V2O5常用作SO2 转化为SO3的催化剂。SO2 分子中S原子价层电子对数是_对,分子的立体构型为_;SO3气态为单分子,该分子中S原子的杂化轨道类型为_;SO3的三聚体环状结构如图c所示,该结构中S原子的杂化轨道类型为_;该结构中SO键长有两类,一类键长约140 pm,另一类键长约为160 pm,较短的键为_(填图c中字母),该分子中含有_个键。V2O5溶解在NaOH溶液中,可得到钒酸钠(Na3VO4),该盐阴离子的立体构型为_;也可以得到偏钒酸钠,其阴离子呈如图d所示的无限链状结构,则偏钒酸钠的化学式为_。解析:(1)甲基上的碳原子为sp3杂化,羰基上的碳原子为sp2杂化。单键全为键,1个双键中含有1个键和1个键,故1 mol丙酮中含有9 mol 键。乙醇中的羟基之间可以形成分子间氢键,故沸点高于丙酮。(2)该单质为石墨,石墨属于混合型晶体,层内碳原子之间形成键和键;石墨中碳原子有3个键,无孤电子对,因此杂化类型为sp2;SiCl4中心原子是Si,有4个键,孤电子对数为0,价层电子对数为4,空间构型为正四面体形;属于非极性分子; SiX4属于分子晶体,不含分子间氢键,范德华力越大,熔沸点越高,范德华力随着相对分子质量的增大而增大,即熔沸点增高;同主族从上到下非金属性减弱,得电子能力减弱,因此PbX2中化学键的离子性减弱,共价性增强。(3)HCHO的结构式为,单键为键,双键中有1个键和1个键,1个HCHO分子中含有3个键,故1 mol HCHO中含有键3 mol。根据HOCH2CN的结构简式可知,C原子形成4个键,该碳原子采取sp3杂化;C原子形成2个键、2个键,该碳原子采取sp杂化。等电子体是指原子总数相同、价电子总数相同的微粒,H2O分子中有3个原子、8个价电子,根据质子电子互换法可知,符合条件的阴离子为NH。Zn2提供空轨道,CN中C原子提供孤电子对,两者形成配位键,结构可表示为或 (4)SO2分子中S原子价电子排布式为3s23p4,价层电子对数是3对,分子的立体构型为V形;SO3气态为单分子,该分子中S原子的杂化轨道类型为sp2杂化;SO3的三聚体环状结构如题图c所示,该结构中S原子的杂化轨道类型为sp3杂化;该结构中SO键长有两类,较短的键为a,该分子中含有12个键。钒酸钠(Na3VO4)中阴离子的立体构型为正四面体形;则偏钒酸钠的化学式为NaVO3。答案:(1)sp2和sp39NA乙醇分子间存在氢键(2)混合型晶体键、键sp24正四面体形非极性.均为分子晶体,范德华力随相对分子质量增大而增大.减弱增强(3)3sp3和spNH或(4)3V形sp2sp3a12正四面体形NaVO33碳、氮元素及其化合物与生产、生活密切相关,回答下列问题。(1)K3Fe(CN)6晶体中Fe3与CN之间的作用力为_,该化学键能够形成的原因是_
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!