资源描述
第63讲直线与圆的综合应用1(2016福建四地六校联考)已知矩形ABCD的对角线交于点P(2,0),边AB所在的直线的方程为xy20,点(1,1)在边AD上所在的直线上(1)求矩形ABCD的外接圆的方程;(2)已知直线l:(12k)x(1k)y54k0(kR),求证:直线l与矩形ABCD的外接圆相交,并求最短弦长 (1)依题意得ABAD,所以kAD1.所以AD的方程为y1x1,即xy20.由得即A(0,2)由已知得矩形ABCD的外接圆是以P(2,0)为圆心,|AP|2为半径,其方程为(x2)2y28.(2)l:(xy5)k(y2x4)0,所以即直线l过定点M(3,2)因为(32)22258,所以点M(3,2)在圆内,所以直线l与圆相交而圆心P与定点M的距离d,所以最短弦长22.2在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为2,在y轴上截得的线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线yx的距离为,求圆P的方程 (1)设P(x,y),圆P的半径长为r,由题设知y22r2,x23r2,从而y22x23,故P点的轨迹方程为y2x21.(2)设P(x0,y0),由已知得,又点P在双曲线y2x21上,从而得由得此时,圆P的半径r.由得此时,圆P的半径r.故圆P的方程为x2(y1)23或x2(y1)23.3(2017新课标卷)设O为坐标原点,动点M在椭圆C:y21上,过M作x轴的垂线,垂足为N,点P满足 .(1)求点P的轨迹方程;(2)设点Q在直线x3上,且1,证明:过点P且垂直于OQ的直线l过C的左焦点F. (1)设P(x,y),M(x0,y0),则N(x0,0),(xx0,y),(0,y0)由得x0x,y0y.因为M(x0,y0)在C上,所以1.因此点P的轨迹方程为x2y22.(2)证明:由题意知F(1,0)设Q(3,t),P(m,n),则(3,t),(1m,n),33mtn,(m,n),(3m,tn)由1得3mm2tnn21.又由(1)知m2n22,故33mtn0.所以0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.4(2016江苏卷)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2y212x14y600及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BCOA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围 圆M的标准方程为(x6)2(y7)225,所以圆心M(6,7),半径为5.(1)由圆心N在直线x6上,可设N(6,y0)因为圆N与x轴相切,与圆M外切,所以0y07,圆N的半径为y0,从而7y05y0,解得y01.因此,圆N的标准方程为(x6)2(y1)21.(2)因为直线lOA,所以直线l的斜率为2.设直线l的方程为y2xm,即2xym0,则圆心M到直线l的距离d.因为BCOA2,而MC2d22,所以255,解得m5或m15.故直线l的方程为2xy50或2xy150.(3)设P(x1,y1),Q(x2,y2)因为A(2,4),T(t,0),所以因为点Q在圆M上,所以(x26)2(y27)225.将代入,得(x1t4)2(y13)225.于是点P(x1,y1)既在圆M上,又在圆x(t4)2(y3)225上,从而圆(x6)2(y7)225与圆x(t4)2(y3)225有公共点,所以5555,解得22t22.因此,实数t的取值范围是22,22
展开阅读全文