2019高考数学一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题练习 理.doc

上传人:tia****nde 文档编号:6286829 上传时间:2020-02-21 格式:DOC 页数:18 大小:315KB
返回 下载 相关 举报
2019高考数学一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题练习 理.doc_第1页
第1页 / 共18页
2019高考数学一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题练习 理.doc_第2页
第2页 / 共18页
2019高考数学一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题练习 理.doc_第3页
第3页 / 共18页
点击查看更多>>
资源描述
9.8圆锥曲线的综合问题考纲解读考点内容解读要求高考示例常考题型预测热度1.定值与最值及范围问题掌握与圆锥曲线有关的最值、定值、参数范围问题掌握2017课标全国,20;2017浙江,21;2017山东,21;2016课标全国,20;2016北京,19;2016山东,21;2015浙江,19;2014四川,10;2014浙江,21解答题2.存在性问题了解并掌握与圆锥曲线有关的存在性问题掌握2014山东,21;2013江西,20解答题分析解读1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为12分,难度偏大.五年高考考点一定值与最值及范围问题1.(2017浙江,21,15分)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|PQ|的最大值.解析(1)设直线AP的斜率为k,k=x-,因为-xb0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|AB|=23,M的半径为|MC|,OS,OT是M的两条切线,切点分别为S,T.求SOT的最大值,并求取得最大值时直线l的斜率.解析(1)由题意知e=,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立得x2=,y2=,因此|OC|=.由题意可知sin=,而=,令t=1+2,则t1,(0,1),因此=1,当且仅当=,即t=2时等号成立,此时k1=,所以sin,因此,所以SOT的最大值为.综上所述:SOT的最大值为,取得最大值时直线l的斜率k1=.3.(2016课标全国,20,12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(1)当t=4,|AM|=|AN|时,求AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围.解析(1)设M(x1,y1),则由题意知y10.当t=4时,E的方程为+=1,A(-2,0).(1分)由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.(2分)将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.(4分)因此AMN的面积SAMN=2=.(5分)(2)由题意,t3,k0,A(-,0).将直线AM的方程y=k(x+) 代入+=1得(3+tk2)x2+2tk2x+t2k2-3t=0.(7分)由x1(-)=得x1=,故|AM|=|x1+ |=.(8分)由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.(9分)由2|AM|=|AN|得=,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=.(10分)t3等价于=0,即0.(11分)由此得或解得kb0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(1)求椭圆C的方程;(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记PFG的面积为S1,PDM的面积为S2.求的最大值及取得最大值时点P的坐标.解析(1)由题意知=,可得a2=4b2.因为抛物线E的焦点F的坐标为,所以b=,所以a=1.所以椭圆C的方程为x2+4y2=1.(2)(i)设P(m0).由x2=2y,可得y=x,所以直线l的斜率为m.因此直线l方程为y-=m(x-m),即y=mx-.设A(x1,y1),B(x2,y2),D(x0,y0).联立得(4m2+1)x2-4m3x+m4-1=0.由0,得0m(或0m20),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.解析(1)设直线l:y=kx+b(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故xM=,yM=kxM+b=.于是直线OM的斜率kOM=-,即kOMk=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k0,k3.由(1)得OM的方程为y=-x.设点P的横坐标为xP.由得=,即xP=.将点的坐标代入l的方程得b=,因此xM=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM.于是=2,解得k1=4-,k2=4+.因为ki0,ki3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.8.(2015浙江,19,15分)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求AOB面积的最大值(O为坐标原点).解析(1)由题意知m0,可设直线AB的方程为y=-x+b.由消去y,得x2-x+b2-1=0.因为直线y=-x+b与椭圆+y2=1有两个不同的交点,所以=-2b2+2+0,将AB中点M代入直线方程y=mx+,解得b=-.由得m.(2)令t=,则|AB|=,且O到直线AB的距离为d=.设AOB的面积为S(t),所以S(t)=|AB|d=.当且仅当t2=时,等号成立.故AOB面积的最大值为.9.(2015天津,19,14分)已知椭圆+=1(ab0)的左焦点为F(-c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.解析(1)由已知有=,又由a2=b2+c2,可得a2=3c2,b2=2c2.设直线FM的斜率为k(k0),则直线FM的方程为y=k(x+c).由已知,有+=,解得k=.(2)由(1)得椭圆方程为+=1,直线FM的方程为y=(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解得x=-c或x=c.因为点M在第一象限,可得M的坐标为.由|FM|=,解得c=1,所以椭圆的方程为+=1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=,即y=t(x+1)(x-1),与椭圆方程联立得消去y,整理得2x2+3t2(x+1)2=6.又由已知,得t=,解得-x-1,或-1x0.设直线OP的斜率为m,得m=,即y=mx(x0),与椭圆方程联立,整理可得m2=-.当x时,有y=t(x+1)0,于是m=,得m.当x(-1,0)时,有y=t(x+1)0,因此mb0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为.(2)由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+2ab,所以=a-b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a-b.11.(2014湖北,21,14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1).求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解析(1)设点M(x,y),依题意得|MF|=|x|+1,即=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x0),依题意,可设直线l的方程为y-1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.(i)当k=0时,此时y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.(ii)当k0时,方程的判别式为=-16(2k2+k-1).设直线l与x轴的交点为(x0,0),由y-1=k(x+2),令y=0,得x0=-.1若由解得k.即当k(-,-1)时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.2若或则由解得k或-k0.即当k时,直线l与C1只有一个公共点,与C2有一个公共点.当k时,直线l与C1有两个公共点,与C2没有公共点.故当k时,直线l与轨迹C恰好有两个公共点.3若则由解得-1k-或0kb0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m20,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|=,所以2d=.故四边形APBQ的面积S=|PQ|2d=2 .而02-m20.由根与系数的关系得,x1+x2=,x1x2=,因为x轴平分PBQ,所以=-,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0,将,代入得2kb2+(k+b)(8-2bk)+2k2b=0,k=-b,此时0,直线l的方程为y=k(x-1),即直线l过定点(1,0).14.(2013安徽,18,12分)设椭圆E:+=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左,右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1PF1Q.证明:当a变化时,点P在某定直线上.解析(1)因为焦距为1,所以2a2-1=,解得a2=.故椭圆E的方程为+=1.(2)证明:设P(x0,y0),F1(-c,0),F2(c,0),其中c=.由题设知x0c,则直线F1P的斜率=,直线F2P的斜率=.故直线F2P的方程为y=(x-c).当x=0时,y=,即点Q的坐标为.因此,直线F1Q的斜率为=.由于F1PF1Q,所以=-1.化简得=-(2a2-1).将代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0=a2,y0=1-a2,即点P在定直线x+y=1上.15.(2013山东,22,13分)椭圆C:+=1(ab0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2.设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k0,试证明+为定值,并求出这个定值.解析(1)由于c2=a2-b2,将x=-c代入椭圆方程+=1,得y=,由题意知=1,即a=2b2.又e=,所以a=2,b=1.所以椭圆C的方程为+y2=1.(2)解法一:设P(x0,y0)(y00).又F1(-,0),F2(,0),所以直线PF1,PF2的方程分别为:y0x-(x0+)y+y0=0,:y0x-(x0-)y-y0=0.由题意知= .由于点P在椭圆上,所以+=1.所以= .因为-m,-2x02,所以=.所以m=x0.因此-m.解法二:设P(x0,y0).当0x02时,当x0=时,直线PF2的斜率不存在,易知P或P.若P,则直线PF1的方程为x-4y+=0.由题意得=-m,因为-m,所以m=.若P,同理可得m=.当x0时,设直线PF1,PF2的方程分别为y=k1(x+),y=k2(x-).由题意知=,所以=.因为+=1,并且k1=,k2=,所以=,即=.因为-m,0x02且x0,所以=.整理得m=,故0m且m.综合可得0m.当-2x00时,同理可得-mb0)的离心率为,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得OQM=ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(xM,0).因为m0,所以-1n0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,ADF为正三角形.(1)求C的方程;(2)若直线l1l,且l1和C有且只有一个公共点E,(i)证明直线AE过定点,并求出定点坐标;(ii)ABE的面积是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.解析(1)由题意知F.设D(t,0)(t0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+=,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)(i)由(1)知F(1,0),设A(x0,y0)(x0y00),D(xD,0)(xD0),因为|FA|=|FD|,则|xD-1|=x0+1,由xD0得xD=x0+2,故D(x0+2,0).故直线AB的斜率kAB=-.因为直线l1和直线AB平行,所以设直线l1的方程为y=-x+b,代入抛物线方程得y2+y-=0,由题意得=+=0,得b=-.设E(xE,yE),则yE=-,xE=,当4时,kAE=-=,可得直线AE的方程为y-y0=(x-x0),由=4x0,整理可得y=(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0),所以直线AE过定点F(1,0).(ii)由(i)知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0+2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=,设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y00,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4,所以点B到直线AE的距离为d=4.则ABE的面积S=416,当且仅当=x0,即x0=1时等号成立.所以ABE的面积的最小值为16.教师用书专用(3)3.(2013湖北,21,13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(mn),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记=,BDM和ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=S2,求的值;(2)当变化时,是否存在与坐标轴不重合的直线l,使得S1=S2?并说明理由.解析依题意可设椭圆C1和C2的方程分别为C1:+=1,C2:+=1.其中amn0,=1.(1)解法一:如图1,若直线l与y轴重合,即直线l的方程为x=0,则S1=|BD|OM|=a|BD|,S2=|AB|ON|=a|AB|,所以=.在C1和C2的方程中,分别令x=0,可得yA=m,yB=n,yD=-m,于是=.若=,则=,化简得2-2-1=0.由1,可解得=+1.故当直线l与y轴重合时,若S1=S2,则=+1.解法二:如图1,若直线l与y轴重合,则|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;S1=|BD|OM|=a|BD|,S2=|AB|ON|=a|AB|.所以=.若=,则=,化简得2-2-1=0.由1,可解得=+1.故当直线l与y轴重合时,若S1=S2,则=+1.(2)解法一:如图2,若存在与坐标轴不重合的直线l,使得S1=S2.根据对称性,不妨设直线l:y=kx(k0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则d1=,d2=,所以d1=d2.又S1=|BD|d1,S2=|AB|d2,所以=,即|BD|=|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(-1)|AB|,|AD|=|BD|+|AB|=(+1)|AB|,于是=.将l的方程分别与C1,C2的方程联立,可求得xA=,xB=.根据对称性可知xC=-xB,xD=-xA,于是=.从而由式和式可得=.令t=,则由mn,可得t1,于是由式可解得k2=.因为k0,所以k20.于是式关于k有解,当且仅当0,等价于(t2-1)1,可解得t1,即1,解得1+,所以当11+时,存在与坐标轴不重合的直线l,使得S1=S2.解法二:如图2,若存在与坐标轴不重合的直线l,使得S1=S2.根据对称性,不妨设直线l:y=kx(k0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则d1=,d2=,所以d1=d2.又S1=|BD|d1,S2=|AB|d2,所以=.因为=,所以=.由点A(xA,kxA),B(xB,kxB)分别在C1,C2上,可得+=1,+=1,两式相减可得+=0,依题意得xAxB0,所以.所以由上式解得k2=.因为k20,所以由0,可解得1.从而11+,所以当11+时,存在与坐标轴不重合的直线l,使得S1=S2.三年模拟A组20162018年模拟基础题组考点一定值与最值及范围问题1.(人教A选21,二A,5,变式)若双曲线-=1(a0,b0)与直线y=2x无交点,则其离心率e的取值范围是() A.(1,2)B.(1,2C.(1,)D.(1,答案D2.(2017湖南长沙模拟,11)P是双曲线C:-y2=1右支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为()A.1B.2+C.4+D.2+1答案D3.(2018河北五校12月联考,20)已知椭圆C:+=1(ab0)的离心率为,右焦点为F,上顶点为A,且AOF的面积为(O是坐标原点).(1)求椭圆C的方程;(2)设P是椭圆C上的一点,过P的直线l与以椭圆的短轴为直径的圆切于第一象限,切点为M,证明:|PF|+|PM|为定值.解析(1)设椭圆的半焦距为c,由已知得椭圆的方程为+y2=1.(2)证明:以短轴为直径的圆的方程为x2+y2=1,F(1,0),设P(x0,y0),则+=1(0b0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=0,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).(1)求椭圆C的方程;(2)设直线l的斜率k0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.解析(1)因为2+=0,所以F1为F2Q的中点.由F1(-c,0),F2(c,0)及已知得Q的坐标为(-3c,0),因为AQAF2,所以b2=3cc=3c2,a2=4cc=4c2,且过A,Q,F2三点的圆的圆心为F1(-c,0),半径为2c,所以2c=2,解得c=1,所以a=2,b=,所以所求椭圆方程为+=1.(2)假设存在点P满足题意,由已知得l的方程为y=kx+2(k0),与椭圆方程联立,消去y可得(3+4k2)x2+16kx+4=0.设G(x1,y1),H(x2,y2),则x1+x2=-,=(16k)2-16(3+4k2)0,又k0,k.+=(x1-m,y1)+(x2-m,y2)=(x1+x2-2m,y1+y2)=(x1+x2-2m,k(x1+x2)+4),=(x2-x1,y2-y1)=(x2-x1,k(x2-x1).由于菱形的对角线互相垂直,故(+)=0,所以(x2-x1)(x1+x2)-2m+k(x2-x1)k(x1+x2)+4=0,即(x2-x1)(x1+x2)-2m+k2(x1+x2)+4k=0.因为k0,所以x2-x10.所以(x1+x2)-2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k-2m=0.所以(1+k2)+4k-2m=0.解得m=-,即m=-.因为k,所以+4k2=4当且仅当k=时,“=”成立,所以-mb0)的离心率e=,过点A(0,-b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(-1,0),若直线y=kx+2(k0)与椭圆交于C、D两点,问:是否存在k使得以CD为直径的圆过E点?请说明理由.解析(1)直线AB的方程为bx-ay-ab=0,依题意可得解得椭圆的方程为+y2=1.(2)存在.理由:假设存在这样的k.联立得(1+3k2)x2+12kx+9=0,由题意知=(12k)2-36(1+3k2)0,设C(x1,y1),D(x2,y2),则x1+x2=-,x1x2=,而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(-1,0),当且仅当CEDE时成立,则y1y2+(x1+1)(x2+1)=0,(k2+1)x1x2+(2k+1)(x1+x2)+5=0,将代入整理得k=,经验证,k=时成立.综上可知,存在k=使得以CD为直径的圆过点E.B组20162018年模拟提升题组(满分:35分时间:30分钟)一、选择题(共5分)1.(2017河南郑州一模,11)已知直线l与双曲线-y2=1相切于点P,l与双曲线的两条渐近线交于M,N两点,则的值为() A.3B.4C.5D.与P的位置有关答案A二、解答题(共30分)2.(2018湖南长沙模拟)已知动圆M在圆F1:(x+1)2+y2=外部且与圆F1相切,同时还在圆F2:(x-1)2+y2=内部与圆F2相切.(1)求动圆圆心M的轨迹方程;(2)记(1)中求出的轨迹为C,C与x轴的两个交点分别为A1、A2,P是C上异于A1、A2的动点,直线l:x=与x轴交于点D,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|DF|为定值.解析(1)设动圆M的半径为r,由已知得|MF1|=+r,|MF2|=-r,|MF1|+|MF2|=4|F1F2|,M点的轨迹是以F1,F2为焦点的椭圆,设椭圆方程为+=1(ab0),则a=2,c=1,则b2=a2-c2=3,故圆心M的轨迹方程为+=1.(2)设P(x0,y0),由已知得A1(-2,0),A2(2,0),则=,直线PA1的方程为:y=(x+2),=,直线PA2的方程为:y=(x-2),当x=时,E,F,|DE|DF|=(+2)(-2)=2,又(x0,y0)满足+=1,=-,|DE|DF|=-2=,为定值.3.(2017广东汕头二模,20)已知O为坐标原点,圆M:(x+1)2+y2=16,定点F(1,0),点N是圆M上一动点,线段NF的垂直平分线交圆M的半径MN于点Q,点Q的轨迹为E.(1)求曲线E的方程;(2)已知点P是曲线E上但不在坐标轴上的任意一点,曲线E与y轴的交点分别为B1、B2,直线B1P和B2P分别与x轴相交于C、D两点,请问线段长之积|OC|OD|是否为定值?如果是,请求出定值;如果不是,请说明理由;(3)在(2)的条件下,若点C的坐标为(-1,0),过点C的直线l与E相交于A、B两点,求ABD面积的最大值.解析(1)连接FQ,则|FQ|=|NQ|,|MQ|+|FQ|=|MQ|+|QN|=|MN|=4|MF|,根据椭圆的定义得,E是以M(-1,0),F(1,0)为焦点,4为长轴长的椭圆,2a=4,即a=2,又焦点为(1,0),即c=1,b2=a2-c2=4-1=3.故点Q的轨迹E的方程为+=1.(2)是定值.设P(x0,y0)(x02,y03),不妨设B1在y轴负半轴上,则直线B1P的方程为y=x-.令y=0,得xC=,同理得xD=,|OC|OD|=|xC|xD|=.点P是曲线E上但不在坐标轴上的任意一点,+=1,即3=4(3-),|OC|OD|=4,因此|OC|OD|是定值,且定值为4.(3)当点C的坐标为(-1,0)时,点D(-4,0),|CD|=3,设直线l的方程为x=my-1,A(x1,y1),B(x2,y2),由得(3m2+4)y2-6my-9=0,=36(4m2+4),y1,2=,|y1-y2|=,ABD的面积S=|y1-y2|3=.m20,1,又函数y=3x+在1,+)上为增函数,3+4,S,当m=0,即直线AB的方程为x=-1时,ABD的面积最大,且最大值为.C组20162018年模拟方法题组方法1与圆锥曲线相关的最值、范围问题的解题方法1.(2017江西南昌NCS项目模拟,11)抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=|AB|,则AFB的最大值为() A.B.C.D.答案D2.(2018天津模拟,20)已知椭圆C:+=1(ab0),且椭圆上的点到一个焦点的最短距离为b.(1)求椭圆C的离心率;(2)若点M在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求OAB面积的最大值.解析(1)由题意得a-c=b,则(a-c)2=b2,结合b2=a2-c2,得(a-c)2=(a2-c2),即2c2-3ac+a2=0,亦即2e2-3e+1=0,结合0e0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.由y1+y2=k(x1+x2)+2m=,得线段AB的中点坐标为N,因为N在直线y=x上,所以-=2,解得k=-.所以=48(12-m2)0,得-2m2,且m0,|AB|=|x2-x1|=.又原点O到直线l的距离d=,所以SOAB=.当且仅当12-m2=m2,即m=时等号成立,符合-2mb0)的离心率为,抛物线C2:x2=-ay的准线方程为y=.(1)求椭圆C1和抛物线C2的方程;(2)设过定点M(0,2)的直线与椭圆C1交于不同的两点P,Q,若O在以PQ为直径的圆的外部,求直线的斜率的取值范围.解析(1)由题意得=,a=2,故抛物线C2的方程为x2=-2y,又e=,c=,b=1,从而椭圆C1的方程为+y2=1.(2)显然直线x=0不满足题设条件,可设直线l:y=kx+2,P(x1,y1),Q(x2,y2).由得(1+4k2)x2+16kx+12=0,=(16k)2-412(1+4k2)0,k,x1+x2=,x1x2=,根据题意,得0POQ0,=x1x2+y1y2=x1x2+(kx1+2)(kx2+2)=(1+k2)x1x2+2k(x1+x2)+4=+2k+4=0,-2k0),因抛物线过点(2,4),故42=4p,解得p=4,故抛物线的方程为y2=8x.(2)设A(x1,y1),B(x2,y2),则kPA=,同理,kPB=,kAB=.kPA+kPB=0,+=0,=,y1+4=-y2-4,y1+y2=-8,kAB=-1.直线AB的斜率恒为定值-1.(3)kPAkPB=1,=1,y1y2+4(y1+y2)-48=0.直线AB的方程为y-y1=,即(y1+y2)y-y1y2=8x.将y1y2=-4(y1+y2)+48代入上式得(y1+y2)(y+4)=8(x+6),该直线恒过定点(-6,-4),命题得证.5.(2018河南新乡模拟,20)已知右焦点为F的椭圆M:+=1(a)与直线y=相交于P,Q两点,且PFQF.(1)求椭圆M的方程:(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为ABC的重心,试探究ABC的面积是否为定值.若是,求出这个定值;若不是,说明理由.解析(1)设F(c,0),P,Q,将点P的坐标代入椭圆方程可得+=1,即t2=a2,由PFQF,可得=-1,即c2-t2=-,由可得c2=a2-.又a2-c2=3,解得a=2,c=1,故椭圆方程为+=1.(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2-12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=-,y1+y2=k(x1+x2)+2m=,由O为ABC的重心,可得=-(+)=,由C在椭圆上,得3+4=12,化简可得4m2=3+4k2,|AB|=,C到直线AB的距离d=,SABC=|AB|d=.当直线AB的斜率不存在时,|AB|=3,d=3,SABC=|AB|d=.综上可得,ABC的面积为定值.6.(2017福建福州模拟,20)已知点P是直线l:y=x+2与椭圆+y2=1(a1)的一个公共点,F1,F2分别为该椭圆的左,右焦点,设|PF1|+|PF2|取得最小值时椭圆为C.(1)求椭圆C的标准方程及离心率;(2)已知A,B为椭圆C上关于y轴对称的两点,Q是椭圆C上异于A,B的任意一点,直线QA,QB分别与y轴交于点M(0,m),N(0,n),试判断mn是否为定值,如果为定值,求出该定值;如果不是,请说明理由.解析(1)联立得(a2+1)x2+4a2x+3a2=0.直线y=x+2与椭圆有公共点,=16a4-4(a2+1)3a20,得a23,又a1,a,由椭圆的定义知|PF1|+|PF2|=2a,故当a=时,|PF1|+|PF2|取得最小值,此时椭圆C的标准方程为+y2=1,离心率为=.(2)mn为定值.设A(x1,y1),B(-x1,y1),Q(x0,y0)(y0y1),且已知M(0,m),N(0,n),由题意知kQA=kQM,=,即m=y0-=,同理,得n=,mn=,又+=1,+=1,=1-,=1-,mn=1,mn为定值1.方法3存在性问题的解题策略7.(2016吉林长春外国语学校第一次质量检测,21)已知椭圆C:+=1(ab0)的离心率为,且过点.(1)求椭圆C的方程;(2)设不过原点O的直线l:y=kx+m(k0)与椭圆C交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,若4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值并证明你的结论;若不是,请说明理由.解析(1)依题意可得又a2=b2+c2,a=2,b=1.椭圆C的方程是+y2=1.(2)当k变化时,m2为定值,证明如下:由得(1+4k2)x2+8kmx+4(m2-1)=0.设P(x1,y1)、Q(x2,y2),则x1+x2=-,x1x2=,直线OP、OQ的斜率依次为k1、k2,且4k=k1+k2,4k=+=+,得2kx1x2=m(x1+x2),m2=,经检验满足0.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!