资源描述
课时作业52随机事件的概率1给出以下三个命题:(1)将一枚硬币抛掷二次,记事件A:“二次都出现正面”,事件B:“二次都出现反面”则事件A与事件B是对立事件;(2)在命题(1)中,事件A与事件B是互斥事件;(3)在10件产品中有3件是次品,从中任取3件,记事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,则事件A与事件B是互斥事件,其中真命题的个数是()A0 B1C2 D3解析:命题(1)是假命题,命题(2)是真命题,命题(3)是假命题对于(1),因为抛掷二次硬币,除事件A、B外,还有“第一次出现正面,第二次出现反面”和“第一次出现反面,第二次出现正面”两种事件,所以事件A和事件B不是对立事件,但它们不会同时发生,所以是互斥事件;对于(3),若所取的3件产品中恰有2件次品,则事件A和事件B同时发生,所以事件A和事件B不是互斥事件答案:B2(2016天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A. B.C. D.解析:事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为.答案:A3(2018安徽黄山一模)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A. B.C. D.解析:从1,2,3,4,5这5个数中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P.选A.答案:A4(2018揭阳模拟)把红、黑、蓝、白4张纸牌随机地分给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A对立事件B不可能事件C互斥事件但不是对立事件D以上答案都不对解析:由互斥事件和对立事件的概念可判断,应选C.答案:C5(2018湖南常德模拟)现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为()A. B.C. D.解析:将这枚骰子先后抛掷两次的基本事件总数为6636(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个,这两次出现的点数之和大于点数之积的概率为P.故选D.答案:D6(2018石家庄模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为()A0.95 B0.97C0.92 D0.08解析:记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)1P(B)P(C)15%3%92%0.92.答案:C二、填空题7(1)某人投篮3次,其中投中4次是_事件;(2)抛掷一枚硬币,其落地时正面朝上是_事件;(3)三角形的内角和为180是_事件解析:(1)共投篮3次,不可能投中4次;(2)硬币落地时正面和反面朝上都有可能;(3)三角形的内角和等于180.答案:(1)不可能(2)随机(3)必然8如果事件A与B是互斥事件,且事件AB发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为_解析:P(A)P(B)0.64,P(B)3P(A),P(A)0.16.答案:0.169对飞机连续射击两次,每次发射一枚炮弹设A两次都击中飞机,B两次都没击中飞机,C恰有一次击中飞机,D至少有一次击中飞机,其中彼此互斥的事件是_,互为对立事件的是_解析:设I为对飞机连续射击两次所发生的所有情况,因为AB,AC,BC,BD.故A与B,A与C,B与C,B与D为彼此互斥事件,而BD,BDI,故B与D互为对立事件答案:A与B,A与C,B与C,B与DB与D三、解答题10.某学校篮球队、羽毛球队、乒乓球队的某些队员不只参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率解析:(1)设“该队员只属于一支球队”为事件A,则事件A的概率P(A).(2)设“该队员最多属于两支球队”为事件B,则事件B的概率P(B)1.11(2018河南八市重点高中质量监测)某校在高三抽取了500名学生,记录了他们选修A、B、C三门课的情况,如下表: 科目学生人数 ABC120是否是60否否是70是是否50是是是150否是是50是否否(1)试估计该校高三学生在A、B、C三门选修课中同时选修两门课的概率;(2)若某高三学生已选修A门课,则该学生同时选修B、C中哪门课的可能性大?解析:(1)由频率估计概率得所求概率P0.68.(2)若某学生已选修A门课,则该学生同时选修B门课的概率为P,选修C门课的概率为P,因为,所以该学生同时选修C门课的可能性大能力挑战12某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示:一次购物量1至4件5至8件9至12件13至16件17件以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)求x,y的值;(2)求一位顾客一次购物的结算时间超过2分钟的概率解析:(1)由已知得25y1055,x3045,所以x15,y20.(2)记A:一位顾客一次购物的结算时间超过2分钟A1:该顾客一次购物的结算时间为2.5分钟A2:该顾客一次购物的结算时间为3分钟将频率视为概率得P(A)P(A1)P(A2)0.3.所以一位顾客一次购物的结算时间超过2分钟的概率为0.3.
展开阅读全文