2018-2019高中数学 模块综合试卷 苏教版必修4.doc

上传人:tia****nde 文档编号:6268511 上传时间:2020-02-21 格式:DOC 页数:10 大小:152.50KB
返回 下载 相关 举报
2018-2019高中数学 模块综合试卷 苏教版必修4.doc_第1页
第1页 / 共10页
2018-2019高中数学 模块综合试卷 苏教版必修4.doc_第2页
第2页 / 共10页
2018-2019高中数学 模块综合试卷 苏教版必修4.doc_第3页
第3页 / 共10页
点击查看更多>>
资源描述
模块综合试卷(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1若角是第二象限角,且cos,则角是第_象限角答案三解析由角是第二象限角,可得是第一、三象限角又cos,所以角是第三象限角2若,则sincos的值为_答案解析由题意得(sincos),所以sincos.3已知向量a(cos75,sin75),b(cos15,sin15),则|ab|的值为_答案1解析如图,将向量a,b的起点都移到原点,即a,b,则|ab|且xOA75,xOB15,于是AOB60,又因为|a|b|1,则AOB为正三角形,从而|ab|1.4设向量a(3cosx,1),b(5sinx1,cosx),且ab,则cos2x_.答案解析向量a(3cosx,1),b(5sinx1,cosx),且ab,3cos2x5sinx10,即3sin2x5sinx20,解得sinx2(舍去)或sinx,则cos2x12sin2x12.5函数y3sincos的最小正周期为_答案解析原式22sin2sinT.6化简:tan(18x)tan(12x)tan(18x)tan(12x)_.答案1解析因为tan(18x)(12x)tan30,所以tan(18x)tan(12x)1tan(18x)tan(12x),所以原式tan(18x)tan(12x)1tan(18x)tan(12x)1.7.如图所示是曾经在北京召开的国际数学家大会的会标,它是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是,则sin2cos2的值为_答案解析小正方形的边长为cossin,即(cossin)2,得cos,sin,故sin2cos2.8.已知|p|2,|q|3,p,q的夹角为,如图,若5p2q,p3q,D为BC的中点,则|为_答案解析()(6pq),|.9已知sincos,则cos_.答案解析由sincos,得sincoscossincossin,故coscos212sin21.10设向量a(m,1),b(1,2),且|ab|2|a|2|b|2,则m_.答案2解析ab(m1,3),由|ab|2|a|2|b|2,得(m1)232m2121222,解得m2.11函数y的单调减区间为_答案,kZ解析由2sin10,得2k3x2k(kZ),由单调性得2k3x2k(kZ),即2k3x2k(kZ),得,kZ.12函数yAsin(x)(A0,0)的部分图象如图所示,则f(1)f(2)f(3)f(11)_.答案22解析由图象可知,f(x)2sin的周期为8,f(1)f(2)f(3)f(11)f(1)f(2)f(3)2sin2sin2sin22.13关于函数f(x)sinsin,有以下结论:yf(x)的最大值为;yf(x)在区间上是单调增函数;当x1x2,f(x1)f(x2);函数f(x)的图象关于点对称;将函数g(x)cos2x的图象向右平移个单位长度后与函数f(x)的图象重合其中正确的结论是_(填序号)答案解析f(x)sinsincossinsinsin.yf(x)的最大值为,正确;由2k2x2k,kZ可解得函数f(x)的单调增区间为,kZ,故错误;当x1x2时,f(x1)f(x2)sinsinsinf(x2)故正确;由2xk,kZ可解得函数的对称点为,kZ,当k0时,正确;将函数g(x)cos2x的图象向右平移个单位长度后得到函数解析式h(x)coscossin,故错误故答案为.14给出下列4个命题:函数ytanx的图象关于点,kZ对称;函数f(x)sin|x|是最小正周期为的周期函数;设为第二象限角,则tancos,且sincos;函数ycos2xsinx的最小值为1.其中正确的命题是_(填序号)答案解析点,kZ是正切函数的对称中心,对;f(x)sin|x|不是周期函数,错;,kZ,当k2n1,nZ时,sincos.错;y1sin2xsinx2,当sinx1时,ymin1,对二、解答题(本大题共6小题,共90分)15(14分)已知,且sincos.(1)求cos的值;(2)若sin(),求cos的值解(1)因为sincos,两边同时平方,得sin.又,所以cos.(2)因为,所以,故.又sin(),得cos().coscos()coscos()sinsin().16(14分)已知函数f(x)4tanxsincos.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间上的单调性解(1)f(x)的定义域为.f(x)4tan xcosxcos4sin xcos4sin x2sin xcosx2sin2xsin 2x(1cos 2x)sin 2xcos 2x2sin.所以f(x)的最小正周期为T.(2)令z2x,则函数y2sin z的单调增区间是,kZ.由2k2x2k,得kxk,kZ.设A,B,可知AB.所以当x时,f(x)在区间上是单调增函数,在区间上是单调减函数17(14分)已知向量m(sinx,1cosx),n(1sinx,cosx),函数f(x)mn.(1)求函数f(x)的零点;(2)若f(),且,求cos的值解(1)f(x)mnsin xsin2xcosxcos2xsin xcosx2sin.由2sin0,得xk(kZ),所以xk(kZ),所以函数f(x)的零点为xk(kZ)(2)由(1),知f()2sin,所以sin,因为,所以0,从而sin,所以sin,cos.(2)由ab,得sincoscossin,即sin(),cos()或,sinsin()sin()coscos()sin,即sin或sin,而sin0,所以sin.19(16分)已知a(sinx,cosx),b(cosx,cosx),f(x)2ab2m1(x,mR)(1)求f(x)关于x的表达式,并求f(x)的最小正周期;(2)若当x时,f(x)的最小值为5,求m的值解(1)f(x)2sinxcosx2cos2x2m1sin2xcos2x2m2sin2m,f(x)的最小正周期为.(2)x,2x,当2x,即x时,函数f(x)取得最小值2m1.2m15,m3.20(16分)已知函数f(x)Asin(x)的部分图象如图所示(1)求f(x)的解析式;(2)将函数yf(x)的图象上所有点的纵坐标不变,横坐标缩为原来的,再将所得函数图象向右平移个单位长度,得到函数yg(x)的图象,求g(x)的单调增区间;(3)当x时,求函数yff的最值解(1)由题图得T,T2,1.又由f0,得Asin0,2k,kZ,2k,kZ.又0,当k1时,.又由f(0)2,得Asin2,A4,f(x)4sin.(2)将f(x)4sin的图象上所有点的横坐标缩短为原来的,纵坐标不变,得到y4sin,再将图象向右平移个单位长度,得到g(x)4sin4sin,由2k2x2k(kZ),得kxk(kZ),g(x)的单调增区间为(kZ)(3)yff4sin4sin4sin4sin44cos x2sin x2cos x4cos x2sin x2cos x4sin.x,x,sin,函数的最小值为4,最大值为2.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!