2018年秋高中数学 章末综合测评3 数系的扩充与复数的引入 新人教A版选修2-2.doc

上传人:tia****nde 文档编号:6249296 上传时间:2020-02-20 格式:DOC 页数:6 大小:64KB
返回 下载 相关 举报
2018年秋高中数学 章末综合测评3 数系的扩充与复数的引入 新人教A版选修2-2.doc_第1页
第1页 / 共6页
2018年秋高中数学 章末综合测评3 数系的扩充与复数的引入 新人教A版选修2-2.doc_第2页
第2页 / 共6页
2018年秋高中数学 章末综合测评3 数系的扩充与复数的引入 新人教A版选修2-2.doc_第3页
第3页 / 共6页
点击查看更多>>
资源描述
章末综合测评(三)数系的扩充与复数的引入(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中只有一项是正确的)1已知z1120i,则12iz等于()Az1Bz1C1018iD1018iC12iz12i(1120i)1018i.2() 【导学号:31062239】A12iB12iC2iD2iD2i.3若复数z满足i,其中i为虚数单位,则z()A1iB1iC1iD1iA由已知得i(1i)i1,则z1i,故选A.4若复数z满足iz24i,则在复平面内,z对应的点的坐标是()A(2,4) B(2,4) C(4,2)D(4,2)Cz42i对应的点的坐标是(4,2),故选C.5若a为实数,且(2ai)(a2i)4i,则a()A1B0C1 D2B(2ai)(a2i)4i,4a(a24)i4i.解得a0.故选B.6z1(m2m1)(m2m4)i,mR,z232i,则“m1”是“z1z2”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件A因为z1z2,所以,解得m1或m2,所以m1是z1z2的充分不必要条件7设z的共轭复数是,若z4,z8,则等于() 【导学号:31062240】AiBiC1DiD设zxyi(x,yR),则xyi,由z4,z8得,所以i.8如图1在复平面上,一个正方形的三个顶点对应的复数分别是12i,2i, 0,那么这个正方形的第四个顶点对应的复数为()图1A3iB3iC13iD13iD12i2i13i,所以C对应的复数为13i.9若复数(bR)的实部与虚部互为相反数,则b()A BCD2C因为i,又复数(bR)的实部与虚部互为相反数,所以,即b.10设zC,若z2为纯虚数,则z在复平面上的对应点落在() 【导学号:31062241】A实轴上B虚轴上C直线yx(x0)上D以上都不对C设zxyi(x,yR),则z2(xyi)2x2y22xyi.z2为纯虚数,yx(x0)11已知0a2,复数z的实部为a,虚部为1,则|z|的取值范围是()A(1,5)B(1,3)C(1,)D(1,)C由已知,得|z|.由0a2,得0a24,1a215.|z|(1,)故选C.12设z1,z2为复数,则下列四个结论中正确的是()A若zz0,则zzB|z1z2|Czz0z1z20Dz1是纯虚数或零D举例说明:若z14i,z222i,则z158i,z8i,zz0,但z与z都是虚数,不能比较大小,故A错;因为|z1z2|2不一定等于(z1z2)2,故|z1z2|与不一定相等,B错;若z12i,z212i,则z34i,z34i,zz0,但z1z20不成立,故C错;设z1abi(a,bR),则1abi,故z112bi,当b0时是零,当b0时,是纯虚数故D正确二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13已知复数z(52i)2(i为虚数单位),则z的实部为_解析复数z(52i)22120i,其实部是21.答案2114. a为正实数,i为虚数单位,2,则a_.解析1ai,则|1ai|2,所以a23.又a为正实数,所以a.答案15设a,bR,abi(i为虚数单位),则ab的值为_. 【导学号:31062242】解析abi53i,依据复数相等的充要条件可得a5,b3.从而ab8.答案816若关于x的方程x2(2i)x(2m4)i0有实数根,则纯虚数m_.解析设mbi(bR且b0),则x2(2i)x(2bi4)i0,化简得(x22x2b)(x4)i0,即解得m4i.答案4i三、解答题(本题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤)17(本小题满分10分)设复数zlg(m22m2)(m23m2)i,当m为何值时,(1)z是实数?(2)z是纯虚数?解(1)要使复数z为实数,需满足,解得m2或1.即当m2或1时,z是实数(2)要使复数z为纯虚数,需满足,解得m3.即当m3时,z是纯虚数18(本小题满分12分)已知复数z11i,z1z2122i,求复数z2. 【导学号:31062243】解因为z11i,所以11i,所以z1z222i122i(1i)1i.设z2abi(a,bR),由z1z21i,得(1i)(abi)1i,所以(ab)(ba)i1i,所以,解得a0,b1,所以z2i.19(本小题满分12分)计算:(1);(2)(2i)(15i)(34i)2i.解(1)原式1i.(2)原式(311i)(34i)2i5321i2i5323i.20(本小题满分12分)已知复数z满足|z|1,且(34i)z是纯虚数,求z的共轭复数.解设zabi(a,bR),则abi且|z|1,即a2b21.因为(34i)z(34i)(abi)(3a4b)(3b4a)i,而(34i)z是纯虚数,所以3a4b0,且3b4a0.由联立,解得或所以i,或i.21(本小题满分12分)已知复数z满足|z|,z2的虚部是2.(1)求复数z;(2)设z,z2,zz2在复平面上的对应点分别为A,B,C,求 ABC的面积解(1)设zabi(a,bR),则z2a2b22abi,由题意得a2b22且2ab2,解得ab1或ab1,所以z1i或z1i.(2)当z1i时,z22i,zz21i,所以A(1,1),B(0,2),C(1,1),所以SABC1.当z1i时,z22i,zz213i,所以A(1,1),B(0,2),C(1,3),所以SABC1.22(本小题满分12分)已知z为虚数,z为实数(1)若z2为纯虚数,求虚数z;(2)求|z4|的取值范围. 【导学号:31062244】解(1)设zxyi(x,yR,y0),则z2x2yi,由z2为纯虚数得x2,所以z2yi,则z2yi2iR,得y0,y3,所以z23i或z23i.(2)因为zxyixiR,所以y0,因为y0,所以(x2)2y29,由(x2)29得x(1,5),所以|z4|xyi4|(1,5)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!