2019-2020年北师大版必修5高中数学第三章《简单线性规划的应用》word教案.doc

上传人:tia****nde 文档编号:6239544 上传时间:2020-02-20 格式:DOC 页数:5 大小:52.50KB
返回 下载 相关 举报
2019-2020年北师大版必修5高中数学第三章《简单线性规划的应用》word教案.doc_第1页
第1页 / 共5页
2019-2020年北师大版必修5高中数学第三章《简单线性规划的应用》word教案.doc_第2页
第2页 / 共5页
2019-2020年北师大版必修5高中数学第三章《简单线性规划的应用》word教案.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年北师大版必修5高中数学第三章简单线性规划的应用word教案教学目的:1.能应用线性规划的方法解决一些简单的实际问题2.增强学生的应用意识.培养学生理论联系实际的观点教学重点:求得最优解 教学难点:求最优解是整数解教材分析:线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小教学过程:一、复习引入: 1二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解 3用图解法解决简单的线性规划问题的基本步骤:(1)根据线性约束条件画出可行域(即不等式组所表示的公共区域);(2)设,画出直线;(3)观察、分析,平移直线,从而找到最优解;(4)最后求得目标函数的最大值及最小值4.求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解5判断可行区域的方法: 由于对在直线同一侧的所有点(x,y),把它的坐标(x,y)代入,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)二、讲解新课:例1:医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每含5单位蛋白质和10单位铁质,售价3元;乙种原料每含7单位蛋白质和4单位铁质,售价2元。若病人每餐至少需要35单位蛋白质和40单位铁质,试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解:设甲、乙两种原料分别用和,需要的费用为病人第餐至少需要35单位蛋白质,可表示为同理,对铁质的要求可表示为问题成为:在约束条件下求目标函数的最小值作出可行域,令,作直线由图可知,把直线平移至顶点时,取最小值由,元所以用甲种原料,乙种原料,费用最省例2:某厂生产一种产品,其成本为27元/,售价为50元/,生产中,每千克产品产生的污水,污水有两种排放方式:方式一:直接排入河流方式二:经厂内污水处理站处理后排入河流,但受污水处理站技术水平的限制,污水处理率只有,污水处理站最大处理能力是,处理污水的成本是5元/另外,环保部门对排入河流的污水收费标准是元/,且允许该厂排入河流中污水的最大量是,那么,该厂应选择怎样的生产与排污方案,可使其每净收益最大?分析:为了解决问题,首先要搞清楚是什么因素决定收益 净收益 = 售出产品的收入生产费用 其中生产费用包括生产成本、污水处理、排污费等设该厂生产的产量为,直接排入河流的污水为,每小时净收益为元,则(1)售出产品的收入为元/(2)产品成本为元/(3)污水产生量为,污水处理量为,污水处理费为元/(4)污水未处理率为,所以污水处理厂处理后的污水排放量为,环保部门要征收的排污费为元/(5)需要考虑的约束条件是:(1)污水处理能力是有限的,即(2)允许排入河流的污水量也是有限的即解:根据题意,本问题可归纳为:在约束条件下,求目标函数的最大值作出可行域,令作直线,由图可知,平移直线,在可行域中的顶点处,取得最大值由故该厂生产该产品,直接排入河流的污水为时,可使每小时净收益最大,最大值为(元)答:该厂应安排生产该产品,直接排入河流的污水为时,其每小时净收益最大。三、课堂练习:已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?解:设甲煤矿向东车站运万吨煤,乙煤矿向东车站运万吨煤,那么总运费z=x+1.5(200x)+0.8y+1.6(300y)(万元) 即z=7800.5x0.8y.x、y应满足:作出上面的不等式组所表示的平面区域设直线x+y=280与y轴的交点为M,则M(0,280) 把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小点M的坐标为(0,280),甲煤矿生产的煤全部运往西车站、乙煤矿向东车站运280万吨向西车站运20万吨时,总运费最少 四、课堂小结:求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解五、课后作业:1、P109页 B组第2题2、要将甲、乙两种长短不同的钢管截成A、B、C三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示: 规格类型钢管类型A规格B规格C规格甲种钢管214乙种钢管231今需A、B、C三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少解:设需截甲种钢管x根,乙种钢管y根,则作出可行域(如图):目标函数为,作出一组平行直线中(t为参数)经过可行域内的点且和原点距离最近的直线,此直线经过直线4x+y=18和直线x+3y=16的交点A(),直线方程为.由于和都不是整数,所以可行域内的点()不是最优解经过可行域内的整点且与原点距离最近的直线是,经过的整点是B(4,4),它是最优解答:要截得所需三种规格的钢管,且使所截两种钢管的根数最少方法是,截甲种钢管、乙种钢管各4根
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!