资源描述
课时规范练20动量守恒定律及其应用基础巩固组1.(人船模型)(2017云南昆明三中检测)一装有柴油的船静止于水面上,船前舱进水,堵住漏洞后用一水泵把前舱中的水抽往后舱,如图所示。不计水的阻力,船的运动情况是()A.向后运动B.向前运动C.静止D.无法判断答案B解析虽然抽水的过程属于船与水的内力作用,但水的质量发生了转移,从前舱转移到了后舱,相当于人从船的一头走到另一头的过程。故B正确。2.(动量守恒定律的应用)(2017广东东莞市月考)滑雪运动是人们酷爱的户外体育活动,现有质量为m的人站立于雪橇上,如图所示。人与雪橇的总质量为m0,人与雪橇以速度v1在水平面上由北向南运动(雪橇所受阻力不计)。当人相对于雪橇以速度v2竖直跳起时,雪橇向南的速度大小为()A.m0v1-m0v2m0-mB.m0v1m0-mC.m0v1+m0v2m0-mD.v1答案D解析根据动量守恒条件可知,人与雪橇组成的系统在水平方向动量守恒,人跳起后水平方向速度不变,雪橇的速度仍为v1,D正确。3.(人船模型)如图所示,质量为m1、半径为r1的小球,放在内半径为r2、质量为m2=3m1的大空心球内,大球开始静止在光滑水平面上,当小球由图中位置无初速度释放后沿内壁滚到最低点时,大球移动的距离为()A.r2-r12B.r2+r12C.r2-r14D.r2+r15答案C4.(多选)(碰撞模型)带有14光滑圆弧轨道、质量为m0的滑车静止置于光滑水平面上,如图所示。一质量为m的小球以速度v0水平冲上滑车,当小球上滑再返回,并脱离滑车时,以下说法可能正确的是()A.小球一定沿水平方向向左做平抛运动B.小球可能沿水平方向向左做平抛运动C.小球可能做自由落体运动D.小球可能水平向右做平抛运动答案BCD解析小球滑上滑车,又返回,到离开滑车的整个过程,相当于小球与滑车发生弹性碰撞的过程。如果mm0,小球离开滑车向右做平抛运动。导学号064003195.(多选)(碰撞模型)(2017贵州台江区月考)如图所示,半径和动能都相等的两个小球相向而行。甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是()A.甲球速度为零,乙球速度不为零B.两球速度都不为零C.乙球速度为零,甲球速度不为零D.两球都以各自原来的速率反向运动答案AB解析首先根据两球动能相等得12m甲v甲2=12m乙v乙2,解得两球碰前动量大小之比为p甲p乙=m甲m乙,因m甲m乙,则p甲p乙,则系统的总动量方向向右。根据动量守恒定律可以判断,碰后两球运动情况可能是A、B所述情况,而C、D情况是违背动量守恒的,故C、D情况是不可能的。6.(动量守恒定律的条件)(2017江苏苏北调研)如图所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推木箱。关于上述过程,下列说法正确的是()A.男孩与木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同答案C解析如果一个系统不受外力或所受外力的矢量和为0,那么这个系统的总动量保持不变。选项A中,男孩与木箱组成的系统受到小车对系统的摩擦力的作用;选项B中,小车与木箱组成的系统受到人对系统的力的作用;动量、动量的改变量均为矢量,选项D中,木箱的动量增量与男孩、小车的总动量增量大小相等、方向相反。故选C。7.(碰撞模型)(2017辽宁大连期末)A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移时间图象如图所示。由图可知,物体A、B的质量之比为()A.11B.12C.13D.31答案C解析由图象知,碰前vA=4 m/s,vB=0。碰后vA=vB=1 m/s,由动量守恒可知mAvA+0=mAvA+mBvB,解得mB=3mA。故选项C正确。8.(多选)(子弹打木块模型)(2017四川内江期末)如图所示,一个质量为M的长条木块放置在光滑的水平面上,现有一颗质量为m、速度为v0的子弹射入木块并最终留在木块中,在此过程中,木块运动的距离为s,子弹射入木块的深度为d,木块对子弹的平均阻力为f,则下列说法正确的是()A.子弹射入木块前、后系统的机械能守恒B.子弹射入木块前、后系统的动量守恒C.f与d之积为系统损失的机械能D.f与s之积为子弹减少的动能答案BC解析子弹射入木块的过程中,阻力对系统要做功,所以系统的机械能不守恒,故A错误;系统处于光滑的水平面上,所受的合外力为零,所以系统的动量守恒,故B正确;系统损失的机械能等于阻力与两个物体相对位移的乘积,即E=Ffd,故C正确;子弹减少的动能等于阻力与子弹位移的乘积,即Ek=W=Ff(s+d),故D错误。导学号06400320能力提升组9.(2017天津河东区一模)在光滑的水平面上,一质量为mA=0.1 kg的小球A,以8 m/s的初速度向右运动(以水平向右为正方向),与质量为mB=0.2 kg的静止小球B发生对心正碰。碰后小球B滑向与水平面相切、半径为R=0.5 m的竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出。则小球B运动到轨道最低点M时的速度为 m/s,碰撞结束后A球的速度大小为 m/s。(g取10 m/s2)答案52解析小球B恰好能通过圆形轨道最高点,有mg=mvN2R代入数据解得vN=5 m/s小球B从轨道最低点C运动到最高点D的过程中机械能守恒,有12mBvM2=2mBgR+12mBvN2联立解得vM=5 m/s所以碰撞后小球B的速度大小为5 m/sA与B碰撞过程中动量守恒,选取向右为正方向,有mAv0=mAvA+mBvB,因为水平面光滑,所以式中vB=vM,代入数据解得vA=-2 m/s,负号表示A的速度方向与初速度的方向相反。10.(2017江苏徐州高三期末)光滑水平面上质量为1 kg的小球A以2.0 m/s的速度与同向运动的速度为1.0 m/s、质量为2 kg的大小相同的小球B发生正碰,碰撞后小球B以1.5 m/s的速度运动。求:(1)碰后A球的速度;(2)碰撞过程中A、B系统损失的机械能。答案(1)1.0 m/s(2)0.25 J解析(1)光滑水平面上,系统动量守恒,根据动量守恒定律有mAvA+mBvB=mAvA+mBvB,代入数据得vA=1.0 m/s。(2)根据能量守恒,碰撞过程中A、B系统损失的机械能有E损=12mAvA2+12mBvB2-12mAvA2-12mBvB2,代入数据解得E损=0.25 J。11.(2017河南联考)如图所示,质量为m1=0.2 kg的小物块A,沿水平面与小物块B发生正碰,小物块B的质量为m2=1 kg。碰撞前,A的速度大小为v0=3 m/s,B静止在水平地面上。由于两物块的材料未知,将可能发生不同性质的碰撞,已知A、B与地面间的动摩擦因数均为=0.2,重力加速度g取10 m/s2,试求碰后B在水平面上滑行的时间。答案0.25 st0.5 s解析假如两物块发生的是完全非弹性碰撞,碰后的共同速度为v1,则由动量守恒定律有m1v0=(m1+m2)v1碰后,A、B一起滑行直至停下,设滑行时间为t1,则由动量定理有(m1+m2)gt1=(m1+m2)v1解得t1=0.25 s。假如两物块发生的是弹性碰撞,碰后A、B的速度分别为vA、vB,则由动量守恒定律有m1v0=m1vA+m2vB由机械能守恒有12m1v02=12m1vA2+12m2vB2设碰后B滑行的时间为t2,则m2gt2=m2vB解得t2=0.5 s可见,碰后B在水平面上滑行的时间t满足0.25 st0.5 s。导学号0640032112.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度)。已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动。重力加速度的大小g取10 m/s2。(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20 kg(2)见解析解析(1)规定向右为速度正方向。冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3。由水平方向动量守恒和机械能守恒定律得m2v20=(m2+m3)v12m2v202=12(m2+m3)v2+m2gh式中v20=-3 m/s为冰块推出时的速度。联立式并代入题给数据得m3=20 kg。(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v20=0代入数据得v1=1 m/s设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v20=m2v2+m3v312m2v202=12m2v22+12m3v32联立式并代入数据得v2=1 m/s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩。
展开阅读全文