概率论与数理统计课件(PPT).ppt

上传人:xt****7 文档编号:6218732 上传时间:2020-02-19 格式:PPT 页数:679 大小:12.61MB
返回 下载 相关 举报
概率论与数理统计课件(PPT).ppt_第1页
第1页 / 共679页
概率论与数理统计课件(PPT).ppt_第2页
第2页 / 共679页
概率论与数理统计课件(PPT).ppt_第3页
第3页 / 共679页
点击查看更多>>
资源描述
概率论与数理统计 教师 崔冉冉河南工业大学理学院 教材 概率论与数理统计 第三版王松桂等编科学出版社 参考书 1 概率论与数理统计 浙江大学盛骤等编高等教育出版社2 概率论与数理统计 魏振军编中国统计出版社 序言 概率论是研究什么的 人们所观察到的现象大体上分成两类 1 确定性现象或必然现象事前可以预知结果的 即在某些确定的条件满足时 某一确定的现象必然会发生 或根据它过去的状态 完全可以预知其将来的发展状态 2 偶然性现象或随机现象事前不能预知结果 即在相同的条件下重复进行试验时 每次所得到的结果未必相同 或即使知道它过去的状态 也不能肯定它将来的状态 随机现象特点 不确定性与统计规律性概率论 研究和揭示随机现象的统计规律性的科学研究方式 从数量的侧面研究随机现象统计规律 通过数据去研究 八月十五云遮月 正月十五雪打灯 概率论起源 概率统计是一门古老的学科 它起源于十七世纪资本主义上升的初期 物质生活的丰富 人们开始重视精神娱乐 在桥牌活动中 经常要判断某种花色在对方手中的分配 在掷色子中 要判断哪点出现的次数最多 概率论与数理统计正是从研究这类问题开始的 尽管发展较早 但形成一门严谨的学科是在本世纪三十年代 前苏联数学家柯尔莫奇洛夫给出了概率的公理化定义后 才得以迅速发展 随着计算机的问世 六十年代后 形成了许多新的统计分支 时间序列分析 统计推断等等 目前它几乎遍及所有的学科技术领域 第一章随机事件 1 1基本概念1 1 1随机试验与事件1 1 2随机事件及其运算 1 1 1随机试验与事件 随机试验 试验 的特点 1 可在相同条件下重复进行 2 每次试验之前无法确定具体是哪种结果出现 但能确定所有的可能结果 试验常用 E 表示 E1 掷一颗骰子 观察所掷的点数是几 E2 工商管理部门抽查产品是否合格 E3 观察某城市某个月内交通事故发生的次数 E4 已知物体长度在a和b之间 测量其长度 E5 对某只灯泡做试验 观察其使用寿命 E6 对某只灯泡做试验 观察其使用寿命是否小于200小时 随机 试验的例子 样本空间 试验的所有可能结果所组成的集合称为样本空间 记为 样本点 试验的单个结果或样本空间的单元素称为样本点 E1 掷一颗骰子 观察所掷的点数是几 E2 工商管理部门抽查产品是否合格 合格品 不合格品 E3 观察某市某月内交通事故发生的次数 E4 物体长度在a和b之间 测量其长度 E5 对某只灯泡做试验 观察其使用寿命 E6 对某只灯泡做试验 观察其使用寿命是否小于200小时 小于200小时 不小于200小时 随机 试验的例子 随机事件 样本空间的任意一个子集称为随机事件 简称 事件 记作A B C 任何事件均可表示为样本空间的某个子集 基本事件 一个随机事件只含有一个试验结果 事件A发生当且仅当试验的结果是子集A中的元素 两个特殊事件 必然事件 样本空间包含了所有的样本点 且是自身的一个子集 在每次试验中总是发生 不可能事件 不包含任何的样本点 也是样本空间的一个子集 在每次试验中总不发生 注意 样本点和基本事件的区别 解 为基本事件 例1 1 1掷一颗色子 用表示所掷点数 B表示 偶数点 C表示 奇数点 D表示 四点或四点以上 写出样本空间 指出哪些是基本事件 表示B C D 1 1 2 事件的关系与运算 既然事件是一个集合 因此有关事件间的关系 运算及运算规则也就按集合间的关系 运算及运算规则来处理 是试验E的样本空间 A B C是事件1 包含关系 事件A发生必有事件B发生 记为A B 称A包含于B A B A B且B A 2 和事件 事件A与事件B至少有一个发生 记作A B 推广 n个事件A1 A2 An至少有一个发生 记作 3 积事件 事件A与事件B同时发生 记作A B ABA和B的公共部分 推广 n个事件A1 A2 An同时发生 记作A1A2 An 互斥的事件 也称互不相容事件 即事件A与事件B不可能同时发生 AB 4 差事件 A B称为A与B的差事件 表示事件A发生而事件B不发生 A去除A和B的公共部分 互逆的事件 A B 且AB 注意 对立一定互斥 互斥不一定对立 事件的运算 1 交换律 A B B A AB BA2 结合律 A B C A B C AB C A BC 3 分配律 A B C AC BC AB C A C B C 4 对偶 DeMorgan 律 例 甲 乙 丙三人各向目标射击一发子弹 以A B C分别表示甲 乙 丙命中目标 试用A B C的运算关系表示下列事件 某人向目标射击 以A表示事件 命中目标 P A 考虑事件在一次试验中发生可能性的大小的数字度量 概率 1 2事件的概率 定义1 2 1在相同条件下 事件A在n次重复试验中发生m次 则称比值m n称为事件A在n次试验中发生的频率 记为fn A 1 2 1事件的频率 频率的性质 1 非负性 0 fn A 1 2 规范性 fn 1 fn 0 3 可加性 若AB 则fn A B fn A fn B 注意 称为 n次试验发生的频率 是因为随着n的取值不同 fn A 的值有可能不同 历史上曾有人做过试验 试图证明抛掷匀质硬币时 出现正反面的机会均等 实验者nnHfn H DeMorgan204810610 5181Buffon404020480 5069K Pearson1200059810 4984K Pearson24000120120 5005从表中不难发现 事件A在n次试验中发生的频率具有随机波动性 当n较小时 波动的幅度较大 当n较大时 波动的幅度较大 最后随着n的逐渐增大 频率fn A 逐渐稳定于固定值0 5 实践证明 当试验次数n增大时 fn A 逐渐趋向一个稳定值 可将此稳定值记作P A 作为事件A的概率 但是在一定条件下做重复试验 其结果可能不同 并且没有必要 不可能对每个事件都做大量的试验 从中得到频率的稳定值 我们从频率的性质出发 给出度量事件发生的可能性大小的量 概率的定义及性质 1 2 2 概率的公理化定义 定义1 2 2若对随机试验E所对应的样本空间 中的每一事件A 定义一个实数P A 与之对应 集合函数P A 满足条件 1 非负性 P A 0 2 规范性 P 1 3 可列可加性 若事件A1 A2 两两互斥 即AiAj i j i j 1 2 有P A1 A2 P A1 P A2 则称P A 为事件A的概率 概率的性质 1 P 0 2 有限可加性 设事件A1 A2 An两两斥 即AiAj i j i j 1 2 n 则有P A1 A2 An P A1 P A2 P An 3 互补性 P A 1 P A 4 单调不减性 若事件 则P B A P B P A P B P A 注意 一般情况下 P B A P B P AB 5 加法公式 对任意两事件A B 有P A B P A P B P AB 该公式可推广到任意n个事件A1 A2 An的情形 6 可分性 对任意两事件A B 有P A P P AB 某市有甲 乙 丙三种报纸 订每种报纸的人数分别占全体市民人数的30 其中有10 的人同时定甲 乙两种报纸 没有人同时订甲乙或乙丙报纸 求从该市任选一人 他至少订有一种报纸的概率 EX 解 设A B C分别表示选到的人订了甲 乙 丙报 例在1 10这10个自然数中任取一数 求 1 取到的数能被2或3整除的概率 2 取到的数即不能被2也不能被3整除的概率 3 取到的数能被2整除而不能被3整除的概率 解 设A 取到的数能被2整除 B 取到的数能被3整除 故 若某试验E满足 1 有限性 样本空间2 等可能性 则称E为古典概型也叫等可能概型 1 3古典概型 古典概型中的概率的求法 试验E的结果有有限种 样本点是有限个 1 n 1 2 n i 是基本事件 且各自发生的概率相等 于是 有1 P P 1 2 n P 1 P 2 P n nP i i 1 2 n 从而 P i 1 n i 1 2 n 因此 若事件A包含k个基本事件 即 则 例1 掷色子两次 求两次之和为7的概率 解 1 1 1 2 1 6 2 1 6 6 A 1 6 6 1 2 5 5 2 3 4 4 3 古典概型的两类基本问题 乘法公式 设完成一件事需分两步 第一步有n1种方法 第二步有n2种方法 则完成这件事共有n1n2种方法 也可推广到分若干步 加法公式 设完成一件事可有两种途径 第一种途径有n1种方法 第二种途径有n2种方法 则完成这件事共有n1 n2种方法 也可推广到若干途径 这两公式的思想贯穿着整个概率问题的求解 复习 排列与组合的基本概念 1 抽取问题例2 有外观相同的三极管6只 按电流放大系数分类 4只属甲类 2只属乙类 求A 抽到两只甲类三极管 的概率 按下列三种方案抽取三极管两只 1 随机抽两只 2 无放回抽两只 3 有放回抽两只 解 例3 有外观相同的三极管6只 按电流放大系数分类 4只属甲类 2只属乙类 不放回抽两只 求下列事件的概率 B 抽到两只同类 C 至少抽到一只甲类 D 抽到两只不同类 解 B 甲甲 乙乙 两种情况互斥 C 乙乙 的补事件 D是B的补事件 例4有外观相同的三极管6只 按电流放大系数分类 4只属甲类 2只属乙类 有放回抽5次 求E 恰有2次抽到甲 的概率 解 延伸到一般 设N件产品中有K件甲类 次品 N K件乙类 正品 K N 有放回抽检产品n次 n和N无关 求事件A 所取产品中恰有k件甲类 次品 的概率 例1 3 7 在实际中 产品的检验 疾病的抽查 农作物的选种等问题均可化为随机抽球问题 我们选择抽球模型的目的在于是问题的数学意义更加突出 而不必过多的交代实际背景 2 分球入盒问题例5 将3个球随机的放入3个盒子中去 问 1 每盒恰有一球的概率是多少 2 空一盒的概率是多少 解 设A 每盒恰有一球 B 空一盒 一般地 把n个球随机地分配到m个盒子中去 n m 则每盒至多有一球的概率是 某班级有n个人 n 365 问至少有两个人的生日在同一天的概率有多大 例6 生日问题 某人群有n个人 他们中至少有两人生日相同的概率有多大 设每个人在一年 按365天计 内每天出生的可能性都相同 现随机地选取n n 365 个人 则他们生日各不相同的概率为故n个人中至少有两人生日相同的概率为1 P A 打开书P12 可看到表1 3 从上表可以看出 在40人左右的人群里 十有八九会发生 两人或两人以上生日相同 这一事件 3随机取数问题 例7从1到200这200个自然数中任取一个 1 求取到的数能被6整除的概率 2 求取到的数能被8整除的概率 3 求取到的数既能被6整除也能被8整除的概率 解 n 200 k 3 200 24 8 k 1 200 6 33 k 2 200 8 25 1 2 3 的概率分别为 33 200 1 8 1 25 在实际问题中 除了要考虑某事件A的概率P A 外 还要考虑已知事件B发生的条件下 事件A发生的概率称为B条件下A的条件概率 记作P A B 1 4条件概率 一般情况下 P A B P A 例1 4 1100件产品中有5件不合格品 而5件不合格品中又有3件是次品 2件是废品 现从100件产品中任意抽取一件 假定每件产品被抽到的可能性都相同 求 1 抽到的产品是次品的概率 2 在抽到的产品是不合格品条件下 产品是次品的概率 解 设A 抽到的产品是次品 B 抽到的产品是不合格品 1 按古典概型计算公式 有 2 由于5件不合格品中有3件是次品 故可得 可见 P A P A B 虽然P A 与P A B 不同 但二者之间存在什么关系呢 先来计算P B 和P AB 因为100件产品中有5件是不合格品 所以P B 5 100 而P AB 表示事件 抽到的产品是不合格品 又是次品 的概率 再由100件产品中只有3件即是不合格品又是次品 得P AB 3 100 通过简单运算 得 受此启发 定义1 4 1设A和B是两个事件 且P B 0 称 称为事件B发生的条件下事件A发生的条件概率 显然 若事件A B是古典概型的样本空间中的两个事件 其中B含有nB个样本点 AB含有nAB个样本点 则P A B 表示AB事件在事件B中所占的比例 这样就把样本空间缩小到事件B中考虑 条件概率 是 概率 吗 条件概率P B 满足概率定义中的三个条件 P A B 0 对每个事件A P 1 3 设A1 A2 是一列两两斥的事件 即AiAj i j i j 1 2 有P A1 A2 B P A1 B P A2 B 例1 4 2有外观相同的三极管6只 按电流放大系数分类 4只属甲类 两只属乙类 不放回地抽取三极管两次 每次只抽一只 求在第一次抽到是甲类A1A2 两次抽三极管的条件下 第二次又抽到甲类三极管的概率 解 记Ai 第i次抽到的是甲类三极管 i 1 2 A1A2 两次抽到的都是甲类三极管 由第2讲中的例1 3 3 可知 再由P A1 4 6 2 3 得 1 4 3乘法公式 设A B P A 0 P B 0时 则P AB P A P B A P AB P B P A B 称为事件A B的概率乘法公式 还可推广到三个事件的情形 P ABC P A P B A P C AB 一般地 有下列公式 P A1A2 An P A1 P A2 A1 P An A1 An 1 例1 4 3 一批灯泡共100只 其中10只是次品 其余为正品 作不放回抽取 每次取一只 求 第三次才取到正品的概率 解 设Ai 第i次取到正品 i 1 2 3 A 第三次才取到正品 则 例10个纸团有3个奖 10个人各抽1个 无放回的抽 Ai 第i个人抽中奖 则 3 B 前2个人都抽中奖 抽中奖的概率与次序无关 2 A 前2个人都没抽中奖 4 C 前两个人恰有一个抽中奖 可见 P B P C P D 1 把要考虑的事件化为要考虑事件与若干个两两互斥事件的交事件的并来考虑 5 D 第2个人抽中奖 第1人可能抽中也可能不中 6 E 第3个人抽中奖 1 4 3全概率公式定义1 4 2事件组B1 B2 Bn n可为 称为样本空间 的一个划分 若满足 定理1 4 1设B1 Bn是 的一个划分 且P Bi 0 i 1 n 则对任何事件A 有 它的理论和实用意义在于 在较复杂情况下 直接计算P A 不容易 但总可以适当地构造一组两两互斥的Bi 使A伴随着某个Bi的出现而出现 且每个P ABi 容易计算 可用所有P ABi 之和计算P A 例1 4 5 一批同型号的螺钉由编号为I II III的三台机器共同生产 各台机器生产的螺钉占这批螺钉的比例分别为35 40 25 各台机器生产的螺钉的次品率分别为3 2 和1 求该批螺钉中的次品率 解 设A 螺钉是次品 B1 螺钉由I号机器生产 B2 螺钉由II号机器生产 B3 螺钉由III号机器生产 则 P B1 0 35 P B2 0 40 P B3 0 25 P A B1 0 03 P A B2 0 02 P A B3 0 01 由全概率公式 得 思考 上例中 若已知取到的是次品 则求是第I台机器生产的概率是多少 定理1 4 2设B1 Bn是 的一个划分 且P Bi 0 i 1 n 则对任何事件A 有 称为贝叶斯公式 1 4 4贝叶斯公式 条件概率 条件概率小结 缩减样本空间 定义式 乘法公式 全概率公式 贝叶斯公式 1 5事件的独立性两事件独立 定义1 5 1设A B是两事件 P A 0 若P B P B A 则称事件A与B相互独立 表明事件B的发生不影响A的发生 等价于 P AB P A B P B P A P B 例1 从一副不含大小王的扑克牌中任取一张 记A 抽到K B 抽到黑色的牌 问事件A B是否独立 解 由于P A 4 52 1 13 P B 26 52 1 2 P AB 2 52 1 26故 P AB P A P B 这说明事件A B独立 思考 互斥和独立之间的联系 若A B互斥 且P A 0 P B 0 则A与B不独立 P AB 0 P A 0 P B 0 P AB P A P B 其逆否命题是 若A与B独立 且P A 0 P B 0 则A与B一定不互斥 请问 能否在样本空间 中找到两个事件 它们既相互独立又互斥 所以 与 独立且互斥 不难发现 或 与任何事件都独立 可以 定理1 5 1以下四件事等价 1 事件A B相互独立 2 事件A B相互独立 3 事件A B相互独立 4 事件A B相互独立 证明 仅证A与B独立 P AB P A AB P A P AB P A P A P B P A 1 P B P A P B 概率的性质 A与B独立 多个事件相互独立定义1 5 2设A1 A2 An是n个事件 如果对任意k 1 k n 任意的1 i1 i2 ik n 具有等式P Ai1Ai2 Aik P Ai1 P Ai2 P Aik 则称n个事件A1 A2 An相互独立 对于三个事件A B C 若P AB P A P B P AC P A P C P BC P B P C P ABC P A P B P C 个等式同时成立 称事件A B C相互独立 n个事件相互独立要满足等式的个数为 事件独立性的应用 在可靠性理论上的应用例如图 1 2 3 4 5表示继电器触点 假设每个触点闭合的概率为p 且各继电器接点闭合与否相互独立 求L至R是通路的概率 设A L至R为通路 Ai 第i个继电器通 i 1 2 5 由全概率公式 例1 5 2验收100件产品方案如下 从中任取3件进行独立测试 如果至少有一件被断定为次品 则拒绝接收此批产品 设一件次品经测试后被断定为次品的概率为0 95 一件正品经测试后被断定为正品的概率为0 99 并知这100件产品恰有4件次品 求该批产品能被接收的概率 解 设A 该批产品被接收 Bi 取出3件产品中恰有i件是次品 i 0 1 2 3 则 因三次测试相互独立 故P A B0 0 993 P A B1 0 992 1 0 95 P A B2 0 99 1 0 95 2 P A B3 1 0 95 3 由全概率公式 得 例1 5 3若干人独立地向一移动目标射击 每人击中目标的概率都是0 6 求至少需要多少人 才能以0 99以上的概率击中目标 解 设至少需要n个人才能以0 99以上的概率击中目标 令A 目标被击中 Ai 第i人击中目标 i 1 2 n 则A1 A2 An相互独立 故 也相互独立 因A A1 A2 An 得P A P A1 A2 An 问题化成了求最小的n 使1 0 4n 0 99 解不等式 得 第一章小结本章由六个概念 随机试验 样本空间 事件 概率 条件概率 独立性 四个公式 加法公式 乘法公式 全概率公式 贝叶斯公式 和一个概型 古典概型 组成 第二章随机变量 随机变量离散型随机变量连续型随机变量随机变量的函数的分布 2 1随机变量的定义关于随机变量 及向量 的研究 是概率论的中心内容 这是因为 对于一个随机试验 我们所关心的往往是与所研究的特定问题有关的某个或某些量 而这些量就是随机变量 也可以说 随机事件是从静态的观点来研究随机现象 而随机变量则是一种动态的观点 一如数学分析中的常量与变量的区分那样 变量概念是高等数学有别于初等数学的基础概念 同样 概率论能从计算一些孤立事件的概念发展为一个更高的理论体系 其基础概念是随机变量 在实际问题中 随机试验的结果可用数量来表示 一方面 有些试验 其结果与数有关 试验结果就是一个数 另一方面 有些试验 其结果看起来与数值无关 但可引进一个变量来表示试验的各种结果 即 试验结果可以数量化 从而转化到数域上去考虑问题 就可以把高数中的思想概念应用过来 定义2 1 1 设 是试验的样本空间 如果对每个 总有一个实数X 与之对应 则称 上的实值函数X 为E的一个随机变量 随机变量常用X Y Z或 等表示 顾名思义 随机变量就是 其值随机会而定 的变量 正如随机事件是 其发生与否随机会而定 的事件 一个随机试验有许多可能的结果 到底出现哪一个要看机会 即有一定的概率 最简单的例子如掷骰子 掷出的点数X是一个随机变量 它可以取1 6等6个值 到底是哪一个 要等掷了骰子以后才知道 因此又可以说 随机变量就是试验结果的函数 随机变量概念的产生是概率论发展史上重大的事件 引入随机变量后 对随机现象统计规律的研究 就由对事件及事件概率的研究扩充到对随机变量及其取值规律的研究 请举几个实际中随机变量的例子 在投篮试验中 用 0 表示投篮未中 1 表示罚篮命中 3 表示三分线外远投命中 2 表示三分线内投篮命中 2 在掷硬币试验中 用 1 表示带国徽或人头的一面朝上 0 表示另一面朝上 请举几个实际中随机变量的例子 3 一部电梯一年内出现故障的次数 用 i 电梯一年内发生i次故障 i 0 1 样本空间 i 0 1 2 令X i i i 0 1 2 X 的值域为 0 1 2 4 用X表示单位时间内某信号台收到呼叫的次数 则X是一个随机变量 事件 收到呼叫 X 1 没有收到呼叫 X 0 随机变量 所有取值可以逐个列举 全部可能取值不仅有无穷多 而且不能一一列举 充满某些区间 2 2离散型随机变量随机变量的分类 例如 取到次品的个数 收到的呼叫数 等例如 电视机的使用寿命 实际中常遇到的 测量误差 等 定义若随机变量X取值x1 x2 xn 且取这些值的概率依次为p1 p2 pn 则称X为离散型随机变量 而称P X xk pk k 1 2 为X的分布律或概率分布 可表为X P X xk pk k 1 2 也可用表格形式给出 Xx1x2 xK Pkp1p2 pk 2 2 1离散型随机变量的概率分布 1 pk 0 k 1 2 2 例1设袋中有5只球 其中有2只白3只黑 现从中任取3只球 不放回 求抽得的白球数X为k的概率 解k可取值0 1 2 分布律的性质 用这两条性质判断一个数列是否是概率分布 例2设随机变量X的概率分布为 确定常数a 解 依据概率分布的性质 欲使上述数列为概率分布 应有 从中解得 这里用到了幂级数展开式 例2 2 1 如上图所示 电子线路中装有两个并联继电器 设这两个继电器是否接通具有随机性 且彼此独立 已知各电器接通的概率为0 8 记X为线路中接通的继电器的个数 求 1 X的概率分布 2 线路接通的概率 解 1 记Ai 第i个继电器接通 i 1 2 因两个继电器是否接通是相互独立的 所以A1和A2相互独立 且P A1 P A2 0 8 下面求X的概率分布 首先 X可能取的值为 0 1 2 P X 0 P 表示两个继电器都没接通 P X 1 P 恰有一个继电器接通 P X 2 P 两个继电器都接通 所以 X的分布律为 2 因线路是并联电路 所以P 线路接通 P 只要一个继电器接通 P X 1 P X 1 P X 2 0 32 0 64 0 96 2 2 2常用的离散型分布 1 0 1 分布 两点分布 设E是一个只有两种可能结果的随机试验 用 1 2 表示其样本空间 P 1 p P 2 1 p 则称X服从参数p的 0 1 分布 或两点分布 记成X B 1 p 例2 2 2200件产品中 有196件正品 4件次品 今从中随机地抽取一件 若规定 则P X 1 196 200 0 98 P X 0 4 200 0 02 故X服从参数为0 98的两点分布 即X B 1 0 98 若以X表示n重贝努里试验事件A发生的次数 则称X服从参数为n p的二项分布 记作X B n p 其分布律为 2 二项分布定义设试验E只有两个结果 记p P A 将试验E独立重复进行n次 则称这n次试验为n重伯努利试验 例5 某射手每次射击时命中10环的概率为p 现进行4次独立射击 求 恰有k次命中10环 的概率 解 用X表示4次射击后 命中10环的次数 则 其中 表示未中 表示命中 易见 X的概率分布为 推广到n次独立射击 即可得 伯努利概型对试验结果有下述要求 1 每次试验条件相同 二项分布描述的是 n重伯努利试验中 事件A发生的次数X的概率分布 3 各次试验相互独立 2 每次试验只考虑两个互逆结果A或 例2 2 4已知某类产品的次品率为0 2 现从一大批这类产品中随机地抽查20件 问恰有k件次品的概率是多少 解 设X为20件产品中次品的个数 则 X b 20 0 2 这是不放回抽取 但抽取的数量比产品的数量小很多 故可当不放回抽取 则有 20件产品中恰有k件次品的概率分布表 教材30页表2 1 下面我们研究二项分布b n p 和两点分布b 1 p 之间的一个重要关系 设试验E只有两个结果 A和 将试验E在相同条件下独立地进行n次 记X为n次独立试验中A出现的次数 描述第i次试验的随机变量记作Xi 则Xi b 1 p 且X1 X2 Xn相互独立 随机变量相互独立的严格定义将在第三章讲述 则有 X X1 X2 Xn 这表明 一个服从二项分布的随机变量可以表示成n个相互独立的服从两点分布的随机变量之和 设随机变量X所有可能取的值为 0 1 2 概率分布为 3 泊松分布 其中 0为常数 则称随机变量X服从参数为 的泊松分布 记为X P 例某一无线寻呼台 每分钟收到寻呼的次数X服从参数 3的泊松分布 求 1 一分钟内恰好收到3次寻呼的概率 2 一分钟内收到2至5次寻呼的概率 解 1 P X 3 P 3 3 33 3 e 3 0 2240 2 P 2 X 5 P X 2 P X 3 P X 4 P X 5 32 2 33 3 34 4 35 5 e 3 0 7169 解 例2 2 6某一城市每天发生火灾的次数X服从参数为0 8的泊松分布 求该城市一天内发生3次以上火灾的概率 P X 3 1 P X 3 1 P X 0 P X 1 P X 2 1 0 80 0 0 81 1 0 82 2 e 0 8 0 0474 历史上 泊松分布是作为二项分布的近似 于1837年由法国数学家泊松引入的 二项分布与泊松分布的关系 定理 泊松定理 对二项分布B n p 当n充分大 p又很小时 对任意固定的非负整数k 有近似公式 泊松定理表明 泊松分布是二项分布的极限分布 当n很大 p很小时 二项分布就可近似地看成是参数 np的泊松分布 例2 2 5某出租汽车公司共有出租车400辆 设每天每辆出租车出现故障的概率为0 02 求 一天内没有出租车出现故障的概率 解 将观察一辆车一天内是否出现故障看成一次试验E 因为每辆车是否出现故障与其它车无关 于是 观察400辆出租车是否出现故障就是做400次伯努利试验 设X表示一天内出现故障的出租车数 则X b 400 0 02 令 np 400 0 02 8 于是 P 一天内没有出租车出现故障 P X 0 b 0 400 0 02 0 98400 0 000309 80 0 e 8 0 0003355 例设某国每对夫妇的子女数X服从参数为 的泊松分布 且知一对夫妇有不超过1个孩子的概率为3e 2 求任选一对夫妇 至少有3个孩子的概率 解 由题意 小结 本节首先介绍了随机变量的基本概念与分类 接着介绍离散型随机变量及其概率分布 然后介绍三种常见的离散型概率分布 两点分布 二项分布 泊松分布及其关系 对于离散型随机变量 如果知道了其概率分布 也就知道了它取各个可能值的概率 连续型随机变量X所有可能取值充满若干个区间 对这种随机变量 不能象离散型随机变量那样 指出其取各个值的概率 给出概率分布 而是用 概率密度函数 表示随机变量的概率分布 2 3连续型随机变量 2 3 1直方图例2 3 1某工厂生产一种零件 由于生产过程中各种随机因素的影响 零件长度不尽相同 现测得该厂生产的100个零件长度 单位 mm 如下 129 132 136 145 140 145 147 142 138 144 147 142 137 144 144 134 149 142 137 137 155 128 143 144 148 139 143 142 135 142 148 137 142 144 141 149 132 134 145 132 140 142 130 145 148 143 148 135 136 152 141 146 138 131 138 136 144 142 142 137 141 134 142 133 153 143 145 140 137 142 150 141 139 139 150 139 137 139 140 143 149 136 142 134 146 145 130 136 140 134 142 142 135 131 136 139 137 144 141 136 这100个数据中 最小值是128 最大值是155 作频率直方图的步骤 1 先确定作图区间 a b a 最小数据 2 b 最大数据 2 是数据的精度 本例中 1 a 127 5 b 155 5 2 确定数据分组数m 7 组距d b a m 本例d 4 子区间端点ti a id i 0 1 m 这样使数据不落在区间的端点上 3 计算落入各子区间内观测值频数ni xj ti 1 ti j 1 2 n 频率fi ni n i 1 2 m 4 以小区间 ti 1 ti 为底 yi fi d i 1 2 m 为高作一系列小矩形 面积为频率 组成了频率直方图 简称直方图 由于概率可以由频率近似 因此这个直方图可近似地刻画零件长度的概率分布情况 用上述直方图刻画随机变量X的概率分布情况是比较粗糙的 为更加准确地刻画X的概率分布情况 应适当增加观测数据的个数 同时将数据分得更细一些 当数据越来越多 分组越来越细时 直方图的上方外形轮廓就越来越接近于某一条曲线 这条曲线称为随机变量X的概率密度曲线 可用来准确地刻画X的概率分布情况 2 3 2概率密度函数 定义2 3 1若存在非负可积函数f x 使随机变量X取值于任一区间 a b 的概率可表示成 则称X为连续型随机变量 f x 为X的概率密度函数 简称概率密度或密度 这两条性质是判定函数f x 是否为某随机变量X的概率密度函数的充要条件 密度函数的性质 f x 与x轴所围面积等于1 非负性 归一性 3 对f x 的进一步理解 故 X的概率密度函数f x 在x这一点的值 恰好是X落在区间 x x x 上的概率与区间长度 x之比的极限 这里 如果把概率理解为质量 f x 相当于物理学中的线密度 定积分中值定理 平均概率 4 连续型随机变量取任意指定值的概率为0 即 a为任意给定值 这是因为 可见 由P A 0 不能推出A 对连续型随机变量X 有 例已知随机变量X的概率密度为1 试确定k值 2 求P X 0 1 解 2 3 3常用的连续型分布 1 均匀分布若X f x 则称X在 a b 内服从均匀分布 记作X U a b 对任意实数c d a c d b 都有 X落在子区间 c d 上的概率仅和区间长度 d c 有关 与位置无关 例长途汽车起点站于每时的10分 25分 55分发车 设乘客不知发车时间 于每小时的任意时刻随机地到达车站 求乘客候车时间超过10分钟的概率 15 45 解 设A 乘客候车时间超过10分钟X 乘客于某时X分钟到达 则X U 0 60 2 指数分布若X 则称X服从参数为 0的指数分布 指数分布常用于可靠性统计研究中 如元件的寿命服从指数分布 例电子元件的寿命X 年 服从参数为3的指数分布 1 求该电子元件寿命超过2年的概率 2 已知该电子元件已使用了1 5年 求它还能使用两年的概率为多少 解 正态分布是实践中应用最为广泛 在理论上研究最多的分布之一 故它在概率统计中占有特别重要的地位 3 正态分布 正态分布是十九世纪初 由高斯 Gauss 给出并推广的一种分布 故 也称高斯分布 正态分布的定义 定义 若随机变量X的概率密度函数为 记作 f x 所确定的曲线叫作正态曲线 Normal 其中 和 都是常数 任意 0 则称X服从参数为 和 的正态分布 1 单峰对称密度曲线关于直线x 对称 f maxf x 正态分布有两个特性 另外 当x 时 f x 0 这说明 曲线f x 向左右伸展时 越来越贴近x轴 即f x 以x轴为渐近线 2 决定了图形的中心位置 决定了图形峰的陡峭程度 标准正态分布参数 0 2 1的正态分布称为标准正态分布 记作X N 0 1 分布函数表示为 密度函数表示为 它的依据是下面的定理 标准正态分布的重要性在于 任何一个一般的正态分布都可以通过线性变换转化为标准正态分布 根据定理2 3 1 只要将标准正态分布的分布函数制成表 就可以解决一般正态分布的概率计算问题 定理2 3 1 书末附有标准正态分布函数数值表 有了它 可以解决一般正态分布的概率计算问题 标准正态分布表 表中给出的是x 0时 x 的取值 例2 3 4假设某地区成年男性的身高 单位 cm X N 170 7 692 求该地区成年男性的身高超过175cm的概率 解 根据假设X N 170 7 692 知 事件 X 175 的概率为 例一种电子元件的使用寿命 小时 服从正态分布 100 152 某仪器上装有3个这种元件 三个元件损坏与否是相互独立的 求 使用的最初90小时内无一元件损坏的概率 解 设Y为使用的最初90小时内损坏的元件数 故 则Y B 3 p 其中 正态分布表 解 设车门高度为h 按设计要求 P X h 0 01 或P X h 0 99 下面我们来求满足上式的最小的h 例2 公共汽车车门的高度是按成年男性与车门顶头碰头机会在0 01以下来设计的 设某地区成年男性身高 单位 cm X N 170 7 692 问车门高度应如何确定 因为X N 170 7 692 求满足P X h 0 99的最小h 故 当汽车门高度为188厘米时 可使男子与车门碰头机会不超过0 01 2 3 4随机变量的分布函数分布函数的概念 定义2 3 2设X是随机变量 对任意实数x 事件 X x 的概率P X x 称为随机变量X的分布函数 记为F x 即F x P X x x 分布函数的性质 1 单调不减性 若a b 则有F a F b 且P a X b P X b P X a F b F a 它表明随机变量落在区间 a b 上的概率可以通过分布函数来计算 2 归一性 对任意实数x 0 F x 1 且 一般地 对离散型随机变量X P X xk pk k 1 2 其分布函数为 例2 3 5设随机变量X具分布律如右表 解 试求出X的分布函数 连续型随机变量的分布函数 即分布函数是密度函数的变上限积分 由上式 得 在f x 的连续点 有 若X是连续型随机变量 f x 是X的密度函数 F x 是分布函数 则对任意x R 总有 解 例2 3 6 设随机变量 求其分布函数 当x a时 有f x 0 F x 0 对x b 有 求连续型随机变量的分布函数 即 解 求F x 对x 1 有F x 0 对x 1 有F x 1 即 本讲首先介绍连续型随机变量 直方图 概率密度函数及性质 然后介绍了三种常用的连续型随机变量 均匀分布 指数分布和正态分布 最后介绍随机变量的分布函数 分别讨论了离散型随机变量的概率分布和分布函数的关系 连续型随机变量的概率密度和分布函数的关系等 小结 2 4一维随机变量函数的分布 问题的提出 在实际中 人们有时对随机变量的函数更感兴趣 如 已知圆轴截面直径D的分布 求截面面积的分布 一般地 设随机变量X的分布已知 求Y g X 设g是连续函数 的分布 这个问题无论在理论上还是在实际中都非常重要 2 4 1离散型随机变量函数的分布律 设X一个随机变量 分布律为X P X xk pk k 1 2 若y g x 是一元单值实函数 则Y g X 也是一个随机变量 求Y的分布律 解 当X取值 1 0 1 2时 Y取对应值4 1 0和1 由P Y 0 P X 1 0 1 P Y 1 P X 0 P X 2 0 3 0 4 0 7 P Y 4 P X 1 0 2 例2 4 1设随机变量X有如下概率分布 求Y X 1 2的概率分布 得Y的概率分布 一般地 若X是离散型随机变量 概率分布为 如果g x1 g x2 g xk 中有一些是相同的 把它们作适当并项即可得到一串互不相同 不妨认为从小到大 的y1 y2 yi 把yi所对应的所有xk 即yi g xk 的pk相加 记成qi 则q1 q2 qi 就是Y g X 的概率分布 例2 4 2在应用上认为 单位时间内 一个地区发生火灾的次数服从泊松分布 设某城市一个月内发生火灾的次数X P 5 试求随机变量Y X 5 的概率分布 解 由于X的所有可能取值为0 1 2 对应的概率分布为 及Y X 5 可知 Y的所有可能取值为0 1 2 且对每个i 当0 i 5时 有k 5 i和k 5 i两个k值与i对应 使 k 5 i 当i 0或i 6时 只有一个k值与i对应 使 k 5 i 于是 Y的概率分布为 2 4 2连续型随机变量函数的密度函数 1 一般方法若X f x x Y g X 为随机变量X的函数 则可先求Y的分布函数FY y P Y y P g X y 然后再求Y的密度函数 此法也叫 分布函数法 解 设Y的分布函数为FY y 则 例设随机变量X有概率密度 求Y 2X 8的概率密度 关于y的变上限积分 于是Y的密度函数 利用P44公式 2 4 1 注意到 得 求导可得 利用P44公式 2 4 1 当y 0时 例2 4 7设X具有概率密度fX x 求Y cX2的密度 c 0 解 设Y和X的分布函数分别为FY y 和FX x 注意到Y X2 0 故当y 0时 FY y 0 从上例中可以看到 在求P Y y 的过程中 关键的一步是设法从 g X y 中解出X 从而得到与 g X y 等价的X的不等式 例如 用 X y 8 2 代替 2X 8 y 这样做是为了利用已知的X的分布 求出相应的Y的分布函数FY y 这就是求随机变量函数Y g X 的分布函数的一种常用方法 用代替 cX2 y 2 公式法 定理的证明与前面的解题思路类似 其中x h y 是y g x 的反函数 例2 4 5已知X N 2 求 解 的概率密度 关于x严单 反函数为 故 例设X U 0 1 求Y ax b的概率密度 a 0 解 Y ax b关于x严单 反函数为 故 而 故 例设随机变量X在 0 1 上服从均匀分布 求Y 2lnX的概率密度 解 在区间 0 1 上 函数lnx 0 故y 2lnx 0 于是y 2lnx在区间 0 1 上单调下降 有反函数 由前述定理 得 注意取绝对值 已知X在 0 1 上服从均匀分布 代入的表达式中 得 即Y服从参数为1 2的指数分布 本章小结 第三章随机向量 有些随机现象只用一个随机变量来描述是不够的 需要用几个随机变量来同时描述 3 导弹在空中位置 坐标 X Y Z 1 某人体检数据 血压X和心律Y 例如 2 钢的基本指标 含碳量X 含硫量Y和硬度Z 一般地 将随机试验涉及到的n个随机量X1 X2 Xn放在一起 记成 X1 X2 Xn 称n维随机向量 或变量 由于从二维随机向量推广到多维随机向量并无实质性困难 所以 我们着重讨论二维随机向量 一维随机变量X R1上的随机点坐标二维随机变量 X Y R2上的随机点坐标n维随机变量 X1 X2 Xn Rn上的随机点坐标多维随机变量的研究方法也与一维类似 用分布函数 概率密度 或分布律来描述其统计规律 3 1二维随机向量及其分布函数 设试验E的样本空间为 X X 与Y Y 是定义在 上的两个随机变量 由它们构成的向量 X Y 称为二维随机向量 二维随机向量 X Y 的性质不仅与X和Y的性质有关 而且还依赖于X和Y之间的相互关系 因此 必须把 X Y 作为一个整体来看待 加以研究 为此 首先引入二维随机向量 X Y 的分布函数的概念 定义3 1 1设 X Y 是二维随机变量 x y R2 则称F x y P X x Y y 为 X Y 的分布函数 也即 分布函数F 表示随机点 X Y 落在区域中的概率 如图阴影部分 几何意义 F x0 y0 就是点 X Y 落在平面上 以 x0 y0 为顶点 且位于该点左下方无限矩形区域上的概率 对于 x1 y1 x2 y2 R2 x1 x2 y1 y2 则P x1 X x2 y1 y y2 F x2 y2 F x1 y2 F x2 y1 F x1 y1 x1 y1 x2 y2 x2 y1 x1 y2 1 单调不减对任意y R 当x1 x2时 F x1 y F x2 y 对任意x R 当y1 y2时 F x y1 F x y2 2 x y R 有0 F x y 1 分布函数F x y 具有如下性质 3 归一性对任意 x y R2 例已知二维随机变量 X Y 的分布函数为 1 求常数A B C 2 求P 0 X 2 0 Y 3 解 3 2二维离散型随机向量 定义3 2 1若二维随机变量 X Y 只能取至多可列个值 xi yj i j 1 2 则称 X Y 为二维离散型随机变量 二维离散型随机变量 X Y 取 xi yj 的概率为pij 则称P X xi Y yj pij i j 1 2 为二维离散型随机向量 X Y 的分布律 记为 X Y P X xi Y yj pij i j 1 2 二维离散型随机向量分布函数与概率分布的关系式为 分布律的性质 1 pij 0 i j 1 2 2 二维离散型随机变量的分布律也可列表表示如下 例袋中有两只红球 三只白球 现不放回摸球二次 令 求 X Y 的分布律 X Y 10 10 例3 2 1设有10件产品 其中7件正品 3件次品 现从中任取两次 每次取一件 取后不放回 令 X 1 若第一次取到的产品是次品 X 0 若第一次取到的产品是正品 Y 1 若第二次取到的产品是次品 Y 0 若第二次取到的产品是正品 求 二维随机向量 X Y 的概率分布 解 X Y 所有可能取的值是 0 0 0 1 1 0 1 1 P X 0 Y 0 P 第一次取正品 第二次取正品 利用古典概型 得 P X 0 Y 0 7 6 10 9 7 15 同理 得P X 0 Y 1 7 3 10 9 7 30 P X 1 Y 0 3 7 10 9 7 30 P X 1 Y 1 3 2 10 9 1 15 例3 2 2为了进行吸烟与肺癌关系的研究 随机调查了23000个40岁以上的人 其结果列在下表之中 X 1 若被调查者不吸烟 X 0 若被调查者吸烟 Y 1 若被调查者未患肺癌 Y 0 若被调查者患肺癌 从表中各种情况出现的次数 计算各种情况出现的频率 就产生了二维随机向量 X Y 的概率分布 P X 0 Y 0 3 23000 0 00013 P X 1 Y 0 1 23000 0 00004 P X 0 Y 1 4597 23000 0 19987 P X 1 Y 1 18399 23000 0 79996 3 3二维连续型随机向量 3 3 1概率密度 定义3 3 1设二维随机向量 X Y 的联合分布函数为F x y 如果存在一个非负函数f x y 使得对任意实数x y 有 则称 X Y 为二维连续型随机向量 f x y 为 X Y 的概率密度函数 简称概率密度 变上限的二重广义积分 概率密度f x y 的性质 1 非负性 f x y 0 x y R2 2 归一性 反之 具有以上两个性质的二元函数f x y 必是某个二维连续型随机变量的密度函数 连续型随机变量X的概率密度 连续型随机向量 X Y 的联合概率密度 4 对于任意平面区域D R2 此外 f x y 还有下述性质 3 若f x y 在 x y R2处连续 则有 二阶混合偏导 即 在区域D内的取值概率就转化为二重积分的计算问题 特别地 解 1 由 例3 3 1设 X Y 的联合概率密度为 其中A是常数 1 求常数A 2 求 X Y 的分布函数 3 计算P 0 X 4 0 Y 5 3 P 0 X 4 0 Y 5 3 3 2均匀分布 定义3 3 2设D是平面上的有界区域 其面积为d 若二维随机向量 X Y 的联合概率密度为 则称 X Y 服从D上的均匀分布 X Y 落在D中某一区域A内的概率P X Y A 与A的面积成正比 而与A的位置和形状无关 P X Y A A的面积 d 解 例2 设 X Y 服从圆域x2 y2 4上的均匀分布 计算P X Y A 这里A是中阴影部分的区域 圆域x2 y2 4面积d 4 区域A是x 0 y 0和x y 1三条直线所围成的三角区域 并且包含在圆域x2 y2 4之内 面积 0 5 故 P X Y A 0 5 4 1 8 其中 1 2为实数 1 0 2 0 1 则称 X Y 服从参数为 1 2 1 2 的二维正态分布 可记为 定义3 3 3若二维随机变量 X Y 的密度函数为 3 3 3二维正态分布 正态分布 X Y 的概率密度函数f x y 满足 1 2 分布函数的概念可推广到n维随机变量的情形 事实上 对n维随机变量 X1 X2 Xn F x1 x2 xn P X1 x1 X2 x2 Xn xn 称为的n维随机变量 X1 X2 Xn 的分布函数 或随机变量X1 X2 Xn的联合分布函数 定义n维随机变量 X1 X2 Xn 如果存在非负的n元函数f x1 x2 xn 使对任意的n元立方体 定义若 X1 X2 Xn 的全部可能取值为Rn上的有限或可列无穷多个点 称 X1 X2 Xn 为n维离散型的 称P X1 x1 X2 x2 Xn xn x1 x2 xn 为n维随机变量 X1 X2 Xn 的联合分布律 则称 X1 X2 Xn 为n维连续型随机变量 称f x1 x2 xn 为 X1 X2 Xn 的概率密度 3 4边缘分布 3 4 1边缘分布函数 二维随机向量 X Y 作为一个整体 有分布函数F x y 其分量X与Y都是随机变量 有各自的分布函数 分别记成FX x 和FY y 分别称为X的边缘分布函数和Y的边缘分布函数 称F x y 为 X Y 的联合分布函数 FX x P X x P X x Y F x FY y P Y y P X Y y F y X与Y的边缘分布函数实质上就是一维随机变量X或Y的分布函数 称其为边缘分布函数的是相对于 X Y 的联合分布而言的 同样地 X Y 的联合分布函数F x y 是相对于 X Y 的分量X和Y的分布而言的 注意 求法 则X的边缘概率分布为 同理可得Y的边缘概率分布为 设 X Y 是二维离散型随机向量 联合概率分布为 3 4 2二维离散型随机向量的边缘分布 解 例3 4 1求例3 2 1中 X Y 的分量X和Y的边缘分布 把这些数据补充到前面表上 例3 4 2求例3 2 2中 X Y 的分量X和Y的边缘分布 P X 0 P X 0 Y 0 P X 0 Y 1 0 00013 0 19987 0 20000 P X 1 P X 1 Y 0 P X 1 Y 1 0 00004 0 79996 0 80000 P Y 0 P X 0 Y 0 P X 1 Y 0 0 00013 0 00004 0 00017 P Y 1 P X 0 Y 1 P X 1 Y 1 0 19987 0 79996 0 99983 把这些数据补充到例3 2 2的表中 得 3 4 2连续型随机向量的边缘概率密度 若 X Y 的联合概率密度为f x y 则 则X的边缘概率密度为 Y的边缘概率密度为 且 例若 X Y 服从矩形区域a x b c y d上均匀分布 则边缘概率密度分别为 注 本例中X与Y都是服从均匀分布的随机变量 但对其它非矩形区域上的均匀分布不一定有上述结论 例3 4 3设 X Y 服从单位圆域x2 y2 1上的均匀分布 求X和Y的边缘概率密度 解 当 x 1时 当 1 x 1时 注意积分限的确定方法 熟练时 被积函数为零的部分可以不写 由X和Y在问题中地位的对称性 将上式中的x改为y 得到Y的边缘概率密度 例设 X Y 的概率密度为 求 1 c的值 2 边缘密度 5c 24 1 c 24 5 解 1 解 2 注意积分限 注意取值范围 注意积分限 注意取值范围 即 例3 4 4设 X Y 服从二维正态分布 求X和Y的边缘概率密度 解 由 说明
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!