资源描述
2019-2020年人教版高中数学必修二教案:2-3-3 直线与平面垂直的性质项目内容课题2.3.3 直线与平面垂直的性质(1课时)修改与创新教学目标1.探究直线与平面垂直的性质定理,培养学生的空间想象能力、实事求是等严肃的科学态度和品质.2.掌握直线与平面垂直的性质定理的应用提高逻辑推理的能力.教学重、难点直线与平面垂直的性质定理及其应用.教学准备多媒体课件教学过程复习 直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.直线和平面垂直的画法及表示如下:图1如图1,表示方法为:a.由直线与平面垂直的定义不难得出:ba.导入新课如图2,长方体ABCDABCD中,棱AA、BB、CC、DD所在直线都垂直所在的平面ABCD,它们之间具有什么位置关系?图2提出问题回忆空间两直线平行的定义.判断同垂直于一条直线的两条直线的位置关系?找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系.用三种语言描述直线与平面垂直的性质定理.如何理解直线与平面垂直的性质定理的地位与作用?讨论结果:如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法.如图3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面.图3如图4,长方体ABCDABCD中,棱AA、BB、CC、DD所在直线都垂直于所在的平面ABCD,它们之间具有什么位置关系? 图4 图5棱AA、BB、CC、DD所在直线都垂直所在的平面ABCD,它们之间互相平行.直线和平面垂直的性质定理用文字语言表示为:垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行.直线和平面垂直的性质定理用符号语言表示为:ba.直线和平面垂直的性质定理用图形语言表示为:如图5.直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系.应用示例例1 证明垂直于同一个平面的两条直线平行.解:已知a,b.求证:ab.图6证明:(反证法)如图6,假定a与b不平行,且b=O,作直线b,使Ob,ab.直线b与直线b确定平面,设=c,则Oc.a,b,ac,bc.ba,bc.又Ob,Ob,b,b,ab显然不可能,因此ba.例2 如图7,已知=l,EA于点A,EB于点B,a,aAB.求证:al.图7证明:l平面EAB.又a,EA,aEA.又aAB,a平面EAB.al.例2 如图8,已知直线ab,b,a.求证:a.图8证明:在直线a上取一点A,过A作bb,则b必与相交,设交点为B,过相交直线a、b作平面,设=a,bb,ab,ab.b,bb,b.又a,ba.由a,b,a都在平面内,且ba,ba知aa.a.例3 如图9,已知PA矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MNCD;(2)若PDA=45,求证:MN面PCD.图9证明:(1)取PD中点E,又N为PC中点,连接NE,则NECD,NE=CD.又AMCD,AM=CD,AMNE.四边形AMNE为平行四边形.MNAE.CDAE.(2)当PDA=45时,RtPAD为等腰直角三角形,则AEPD.又MNAE,MNPD,PDCD=D.MN平面PCD.变式训练 已知a、b、c是平面内相交于一点O的三条直线,而直线l和平面相交,并且和a、b、c三条直线成等角.求证:l.证明:分别在a、b、c上取点A、B、C并使AO=BO=CO.设l经过O,在l上取一点P,在POA、POB、POC中,PO=PO=PO,AO=BO=CO,POA=POB=POC,POAPOBPOC.PA=PB=PC.取AB的中点D,连接OD、PD,则ODAB,PDAB.PDOD=D,AB平面POD.PO平面POD,POAB.同理,可证POBC.AB,BC,ABBC=B,PO,即l.若l不经过点O时,可经过点O作ll.用上述方法证明l,l.课堂小结知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业课本习题2.3 B 组1、2.板书设计教学反思
展开阅读全文