2019年度高考物理一轮复习 第六章 动量 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用学案.doc

上传人:max****ui 文档编号:6193222 上传时间:2020-02-19 格式:DOC 页数:11 大小:198KB
返回 下载 相关 举报
2019年度高考物理一轮复习 第六章 动量 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用学案.doc_第1页
第1页 / 共11页
2019年度高考物理一轮复习 第六章 动量 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用学案.doc_第2页
第2页 / 共11页
2019年度高考物理一轮复习 第六章 动量 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用学案.doc_第3页
第3页 / 共11页
点击查看更多>>
资源描述
专题强化七动力学、动量和能量观点在力学中的应用专题解读1.本专题是力学三大观点在力学中的综合应用,高考对本专题将作为计算题压轴题的形式命题.2.学好本专题,可以帮助同学们熟练应用力学三大观点分析和解决综合问题.3.用到的知识、规律和方法有:动力学方法(牛顿运动定律、运动学规律);动量观点(动量定理和动量守恒定律);能量观点(动能定理、机械能守恒定律和能量守恒定律).一、力的三个作用效果与五个规律分类对应规律公式表达力的瞬时作用效果牛顿第二定律F合ma力对空间积累效果动能定理W合EkW合mv22mv12机械能守恒定律E1E2mgh1mv12mgh2mv22力对时间积累效果动量定理F合tpp I合p动量守恒定律m1v1m2v2m1v1m2v2二、常见的力学模型及其结论模型名称模型描述模型特征模型结论“速度交换”模型相同质量的两球发生弹性正碰m1m2,动量、动能均守恒v10,v2v0(v20,v1v0)“完全非弹性碰撞”模型两球正碰后粘在一起运动动量守恒、能量损失最大vv0(v20,v1v0)“子弹打木块”模型子弹水平射入静止在光滑的水平面上的木块中并最终一起共同运动恒力作用、已知相对位移、动量守恒Ffx相对m1v02(m1m2)v2“人船”模型人在不计阻力的船上行走已知相对位移、动量守恒、开始时系统静止x船L,x人L命题点一动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,因此用动量守恒定律去解决.例1(2017山西五校四联)如图1甲所示,质量均为m0.5kg的相同物块P和Q(可视为质点)分别静止在水平地面上A、C两点.P在按图乙所示随时间变化的水平力F作用下由静止开始向右运动,3s末撤去力F,此时P运动到B点,之后继续滑行并与Q发生弹性碰撞.已知B、C两点间的距离L3.75m,P、Q与地面间的动摩擦因数均为0.2,取g10m/s2,求:图1(1)P到达B点时的速度大小v及其与Q碰撞前瞬间的速度大小v1;(2)Q运动的时间t.答案(1)8m/s7 m/s(2)3.5s解析(1)在03s内,以向右为正方向,对P由动量定理有:F1t1F2t2mg(t1t2)mv0其中F12N,F23N,t12s,t21s解得v8m/s设P在B、C两点间滑行的加速度大小为a,由牛顿第二定律有:mgmaP在B、C两点间做匀减速直线运动,有:v2v122aL解得v17m/s(2)设P与Q发生弹性碰撞后瞬间的速度大小分别为v1、v2,有:mv1mv1mv2mv12mv12mv22碰撞后Q做匀减速直线运动,有:mgmat解得t3.5s变式1(2018宁夏银川质检)质量为m11200kg的汽车A以速度v121m/s沿平直公路行驶时,驾驶员发现前方不远处有一质量m2800 kg的汽车B以速度v215 m/s迎面驶来,两车立即同时急刹车,使车做匀减速运动,但两车仍在开始刹车t1s后猛烈地相撞,相撞后结合在一起再滑行一段距离后停下,设两车与路面间动摩擦因数0.3,取g10m/s2,忽略碰撞过程中路面摩擦力的冲量,求:(1)两车碰撞后刚结合在一起时的速度大小;(2)设两车相撞时间(从接触到一起滑行)t00.2s,则A车受到的水平平均冲力是其自身重力的几倍;(3)两车一起滑行的距离.答案(1)6m/s(2)6倍(3)6m解析(1)对于减速过程有ag对A车有:vAv1at对B车有:vBv2at以碰撞前A车运动的方向为正方向,对碰撞过程由动量守恒定律得:m1vAm2vB(m1m2)v共可得v共6m/s(2)对A车由动量定理得:Ft0m1v共m1vA可得F7.2104N则6(3)对共同滑行的过程有x可得x6m命题点二动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律.2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.例2如图2所示,一小车置于光滑水平面上,小车质量m03kg,AO部分粗糙且长L2m,动摩擦因数0.3,OB部分光滑.水平轻质弹簧右端固定,左端拴接物块b,另一小物块a,放在小车的最左端,和小车一起以v04m/s的速度向右匀速运动,小车撞到固定竖直挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点,质量均为m1 kg,碰撞时间极短且不粘连,碰后以共同速度一起向右运动.(g取10 m/s2)求:图2(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.答案(1)1m/s(2)m(3)0.125m解析(1)对物块a,由动能定理得mgLmv12mv02代入数据解得a与b碰前a的速度:v12m/s;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:mv12mv2代入数据解得v21m/s(2)当弹簧恢复到原长时两物块分离,a以v21m/s的速度,在小车上向左滑动,当与小车同速时,以向左为正方向,由动量守恒定律得mv2(m0m)v3,代入数据解得v30.25 m/s.对小车,由动能定理得mgsm0v32代入数据解得,同速时小车B端到挡板的距离sm(3)由能量守恒得mgxmv22(m0m)v32解得物块a与车相对静止时与O点的距离:x0.125m变式2(2017山东潍坊中学一模)如图3所示,滑块A、B静止于光滑水平桌面上,B的上表面水平且足够长,其左端放置一滑块C,B、C间的动摩擦因数为(数值较小),A、B由不可伸长的轻绳连接,绳子处于松弛状态.现在突然给C一个向右的速度v0,让C在B上滑动,当C的速度为v0时,绳子刚好伸直,接着绳子被瞬间拉断,绳子拉断时B的速度为v0.已知A、B、C的质量分别为2m、3m、m.重力加速度为g,求:图3(1)从C获得速度v0开始经过多长时间绳子刚好伸直;(2)从C获得速度v0开始到绳子被拉断的过程中整个系统损失的机械能.答案(1)(2)mv02解析(1)从C获得速度v0到绳子刚好伸直的过程中,以v0的方向为正方向,根据动量定理得:mgtmv0mv0解得:t(2)设绳子刚伸直时B的速度为vB,对B、C组成的系统,以向右为正方向,由动量守恒定律得:mv0mv03mvB解得:vBv0绳子被拉断的过程中,A、B组成的系统动量守恒,以向右为正方向,根据动量守恒定律得:3mvB2mvA3mv0解得:vAv0整个过程中,根据能量守恒定律得:Emv022mv3m(v0)2m(v0)2mv02命题点三力学三大观点解决多过程问题1.表现形式(1)直线运动:水平面上的直线运动、斜面上的直线运动、传送带上的直线运动.(2)圆周运动:绳模型圆周运动、杆模型圆周运动、拱形桥模型圆周运动.(3)平抛运动:与斜面相关的平抛运动、与圆轨道相关的平抛运动.2.应对策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度;(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功);(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例3(2015广东理综36)如图4所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R0.5m,物块A以v06m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L0.1 m,物块与各粗糙段间的动摩擦因数都为0.1,A、B的质量均为m1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图4(1)求A滑过Q点时的速度大小v和受到的弹力大小F;(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;(3)求碰后AB滑至第n个(nk)光滑段上的速度vn与n的关系式.答案见解析解析(1)由机械能守恒定律得:mv02mg2Rmv2得:A滑过Q点时的速度v4 m/s m/s.在Q点,由牛顿第二定律和向心力公式有:Fmg解得:A滑过Q点时受到的弹力F22 N(2)设A、B碰撞前A的速度为vA,由机械能守恒定律有:mv02mv得:vAv06 m/sA、B碰撞后以共同的速度vP前进,以v0的方向为正方向,由动量守恒定律得:mvA(mm)vP解得:vP3 m/s总动能Ek(mm)v9 J滑块每经过一段粗糙段损失的机械能EFfL(mm)gL0.2 J则k45(3)AB从碰撞到滑至第n个光滑段上损失的能量E损nE0.2n J由能量守恒得:(mm)v(mm)vnE代入数据解得:vn m/s,(nk)变式3如图5所示的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t12s至t24s内工作.已知P1、P2的质量都为m1kg,P与AC间的动摩擦因数为0.1,AB段长L4m,g取10m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞.图5(1)若v16m/s,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能Ek;(2)若P与挡板碰后,能在探测器的工作时间内通过B点,求v1的取值范围和P向左经过A点时的最大动能Ekm.答案(1)3m/s9 J(2)10 m/sv114m/s17J解析(1)P1、P2碰撞过程动量守恒,以向右为正方向,有mv12mv解得v3m/s碰撞过程中损失的动能为Ekmv12(2m)v2解得Ek9J.(2)由于P与挡板的碰撞为弹性碰撞.故P在AC间等效为匀减速直线运动,设P1、P2碰撞后速度为v,P在AC段加速度大小为a,碰后经过B点的速度为v2,由牛顿第二定律和运动学规律,得(2m)g2ma3Lvtat2v2vat解得v12vv2由于2st4s,所以解得v1的取值范围10m/sv114 m/sv2的取值范围1m/sv25 m/s所以当v25m/s时,P向左经过A点时有最大速度v3m/s则P向左经过A点时的最大动能Ekm(2m)v3217J1.如图1所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为.最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B始终未滑离木板.求:图1(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移大小;(2)木块A在整个过程中的最小速度.答案(1)(2)v0解析(1)木块A先做匀减速直线运动,后做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等为止,设为v1.对A、B、C三者组成的系统,以向右为正方向,由动量守恒定律得:mv02mv0(mm3m)v1解得v10.6v0对木块B运用动能定理,有:mgsmv12m(2v0)2解得:s(2)当A和C速度相等时速度最小,设为v,以向右为正方向,由动量守恒定律得则:3mv04mvm2v0(v0v)则vv0(其中v0v为A和B速度的变化量)2.如图2所示,光滑水平面上有一质量M4.0kg的平板车,车的上表面是一段长L1.5m的粗糙水平轨道,水平轨道左侧连一半径R0.25m的四分之一光滑圆弧轨道,圆弧轨道与水平轨道在点O相切.现将一质量m1.0kg的小物块(可视为质点)从平板车的右端以水平向左的初速度v0滑上平板车,小物块与水平轨道间的动摩擦因数0.5,小物块恰能到达圆弧轨道的最高点A.取g10m/s2,求:图2(1)小物块滑上平板车的初速度v0的大小;(2)小物块与车最终相对静止时,它距点O的距离.答案(1)5m/s(2)0.5m解析(1)平板车和小物块组成的系统水平方向动量守恒,设小物块到达圆弧轨道最高点A时,二者的共同速度为v1,以向左的方向为正方向由动量守恒得:mv0(Mm)v1由能量守恒得:mv02(Mm)v12mgRmgL联立并代入数据解得:v05m/s(2)设小物块最终与车相对静止时,二者的共同速度为v2,从小物块滑上平板车到二者相对静止的过程中,以向左的方向为正方向,由动量守恒得:mv0(Mm)v2设小物块与车最终相对静止时,它距O点的距离为x,由能量守恒得:mv02(Mm)v22mg(Lx)联立并代入数据解得:x0.5m.3.如图3所示,小球A质量为m,系在细线的一端,线的另一端固定在O点,O点到光滑水平面的距离为h.物块B和C的质量分别是5m和3m,B与C用轻弹簧拴接,置于光滑的水平面上,且B物块位于O点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离为.小球与物块均视为质点,不计空气阻力,重力加速度为g,求碰撞过程B物块受到的冲量大小及碰后轻弹簧获得的最大弹性势能.图3答案mmgh解析设小球运动到最低点与物块B碰撞前的速度大小为v1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:mghmv12解得:v1设碰撞后小球反弹的速度大小为v1,同理有:mgmv12解得:v1设碰撞后物块B的速度大小为v2,取水平向右为正方向,由动量守恒定律有:mv1mv15mv2解得:v2由动量定理可得,碰撞过程B物块受到的冲量为:I5mv2m碰撞后当B物块与C物块速度相等时轻弹簧的弹性势能最大,据动量守恒定律有5mv28mv3据机械能守恒定律:Epm5mv228mv32解得:Epmmgh.4.如图4所示,光滑水平直轨道上有三个质量均为m的物块A、B、C,B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直到与弹簧分离的过程中.图4(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.答案(1)mv02(2)mv02解析(1)以v0的方向为正方向,对A、B组成的系统,由动量守恒定律得mv02mv1解得v1v0B与C碰撞的瞬间,B、C组成的系统动量定恒,有m2mv2解得v2系统损失的机械能Em()22m()2mv02(2)当A、B、C速度相同时,弹簧的弹性势能最大.以v0的方向为正方向,根据动量守恒定律得mv03mv解得v根据能量守恒定律得,弹簧的最大弹性势能Epmv02(3m)v2Emv02.5.如图5所示,水平放置的轻弹簧左端固定,小物块P置于水平桌面上的A点并与弹簧的右端接触,此时弹簧处于原长.现用水平向左的推力将P缓缓推至B点(弹簧仍在弹性限度内)时,推力做的功为WF6J.撤去推力后,小物块P沿桌面滑动到停在光滑水平地面上、靠在桌子边缘C点的平板小车Q上,且恰好物块P在小车Q上不滑出去(不掉下小车).小车的上表面与桌面在同一水平面上,已知P、Q质量分别为m1kg、M4kg,A、B间距离为L15cm,A离桌子边缘C点的距离为L290cm,P与桌面及P与Q的动摩擦因数均为0.4,g10m/s2,试求:图5(1)把小物块推到B处时,弹簧获得的弹性势能;(2)小物块滑到C点的速度大小;(3)P和Q最后的速度大小;(4)Q的长度.答案(1)5.8J(2)2m/s(3)0.4 m/s(4)0.4m解析(1)由能量守恒,增加的弹性势能为:EpWFmgL1(60.41100.05) J5.8 J(2)对BC过程由动能定理可知:Epmg(L1L2)mv02,代入数据解得小物块滑到C点的速度为:v02 m/s;(3)以向右的方向为正方向,对P、Q由动量守恒定律得:mv0(mM)v解得共同速度:v0.4 m/s(4)对P、Q由能量守恒得:mgLmv02(mM)v2代入数据解得小车的长度:L0.4 m.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!