资源描述
专题跟踪检测(四) “导数与不等式”考法面面观1(2019届高三唐山模拟)已知f(x)x2a2ln x,a0.(1)求函数f(x)的最小值;(2)当x2a时,证明:a.解:(1)函数f(x)的定义域为(0,),f(x)x.当x(0,a)时,f(x)0,f(x)单调递增所以当xa时,f(x)取得极小值,也是最小值,且f(a)a2a2ln a.(2)证明:由(1)知,f(x)在(2a,)上单调递增,则所证不等式等价于f(x)f(2a)a(x2a)0.设g(x)f(x)f(2a)a(x2a),则当x2a时,g(x)f(x)axa0,所以g(x)在(2a,)上单调递增,当x2a时,g(x)g(2a)0,即f(x)f(2a)a(x2a)0,故a.2已知函数f(x)xex2xaln x,曲线yf(x)在点P(1,f(1)处的切线与直线x2y10垂直(1)求实数a的值;(2)求证:f(x)x22.解:(1)因为f(x)(x1)ex2,所以曲线yf(x)在点P(1,f(1)处的切线斜率kf(1)2e2a.而直线x2y10的斜率为,由题意可得(2e2a)1,解得a2e.(2)证明:由(1)知,f(x)xex2x2eln x.不等式f(x)x22可化为xex2x2eln xx220.设g(x)xex2x2eln xx22,则g(x)(x1)ex22x.记h(x)(x1)ex22x(x0),则h(x)(x2)ex2,因为x0,所以x22,ex1,故(x2)ex2,又0,所以h(x)(x2)ex20,所以函数h(x)在(0,)上单调递增又h(1)2e22e20,所以当x(0,1)时,h(x)0,即g(x)0,即g(x)0,函数g(x)单调递增所以g(x)g(1)e22eln 112e1,显然e10,所以g(x)0,即xex2x2eln xx22,也就是f(x)x22.3(2018武汉模拟)设函数f(x)(1xx2)ex(e2.718 28是自然对数的底数)(1)讨论f(x)的单调性;(2)当x0时,f(x)ax12x2恒成立,求实数a的取值范围解:(1)f(x)(2xx2)ex(x2)(x1)ex.当x1时,f(x)0;当2x0.所以f(x)在(,2),(1,)上单调递减,在(2,1)上单调递增(2)设F(x)f(x)(ax12x2),F(0)0,F(x)(2xx2)ex4xa,F(0)2a,当a2时,F(x)(2xx2)ex4xa(x2)(x1)ex4x2(x2)(x1)exx2(x2)(x1)ex1,设h(x)(x1)ex1,h(x)xex0,所以h(x)在0,)上单调递增,h(x)(x1)ex1h(0)0,即F(x)0在0,)上恒成立,F(x)在0,)上单调递减,F(x)F(0)0,所以f(x)ax12x2在0,)上恒成立当a0,而函数F(x)的图象在(0,)上连续且x,F(x)逐渐趋近负无穷,必存在正实数x0使得F(x0)0且在(0,x0)上F(x)0,所以F(x)在(0,x0)上单调递增,此时F(x)F(0)0,f(x)ax12x2有解,不满足题意综上,a的取值范围是2,)4(2018南昌模拟)设函数f(x)2ln xmx21.(1)讨论函数f(x)的单调性;(2)当f(x)有极值时,若存在x0,使得f(x0)m1成立,求实数m的取值范围解:(1)函数f(x)的定义域为(0,),f(x)2mx,当m0时,f(x)0,f(x)在(0,)上单调递增;当m0时,令f(x)0,得0x,令f(x),f(x)在上单调递增,在上单调递减(2)由(1)知,当f(x)有极值时,m0,且f(x)在上单调递增,在上单调递减f(x)maxf2lnm1ln m,若存在x0,使得f(x0)m1成立,则f(x)maxm1.即ln mm1,ln mm10),g(x)10,g(x)在(0,)上单调递增,且g(1)0,0m0时,对任意的x,恒有f(x)e1成立,求实数b的取值范围解:(1)函数f(x)的定义域为(0,)当b2时,f(x)aln xx2,所以f(x)2x.当a0时,f(x)0,所以函数f(x)在(0,)上单调递增当a0时,令f(x)0,解得x (负值舍去),当0x 时,f(x)时,f(x)0,所以函数f(x)在上单调递增综上所述,当b2,a0时,函数f(x)在(0,)上单调递增;当b2,a0时,f(x)bln xxb,f(x)bxb1.令f(x)0,得0x0,得x1.所以函数f(x)在上单调递减,在(1,e上单调递增,f(x)max为fbeb与f(e)beb中的较大者f(e)febeb2b.令g(m)emem2m(m0),则当m0时,g(m)emem2220,所以g(m)在(0,)上单调递增,故g(m)g(0)0,所以f(e)f,从而f(x)maxf(e)beb所以bebe1,即ebbe10.设(t)ette1(t0),则(t)et10,所以(t)在(0,)上单调递增又(1)0,所以ebbe10的解集为(0,1所以b的取值范围为(0,16(2018开封模拟)已知函数f(x)axx2xln a(a0,a1)(1)当ae(e是自然对数的底数)时,求函数f(x)的单调区间;(2)若存在x1,x21,1,使得|f(x1)f(x2)|e1,求实数a的取值范围解:(1)f(x)axln a2xln a2x(ax1)ln a.当ae时,f(x)2xex1,其在R上是增函数,又f(0)0,f(x)0的解集为(0,),f(x)1时,ln a0,y(ax1)ln a在R上是增函数,当0a1时,ln a1或0a0),g(a)120,g(a)a2ln a在(0,)上是增函数而g(1)0,故当a1时,g(a)0,即f(1)f(1);当0a1时,g(a)0,即f(1)1时,f(x)maxf(x)minf(1)f(0)e1,即aln ae1,函数yaln a在(1,)上是增函数,解得ae;当0a1时,f(x)maxf(x)minf(1)f(0)e1,即ln ae1,函数yln a在(0,1)上是减函数,解得0a.综上可知,实数a的取值范围为e,)
展开阅读全文