激光器的工作原理.ppt

上传人:xt****7 文档编号:5950066 上传时间:2020-02-12 格式:PPT 页数:106 大小:3.60MB
返回 下载 相关 举报
激光器的工作原理.ppt_第1页
第1页 / 共106页
激光器的工作原理.ppt_第2页
第2页 / 共106页
激光器的工作原理.ppt_第3页
第3页 / 共106页
点击查看更多>>
资源描述
激光器的工作原理 激光的基本原理及特性 激光产生的基本原理 一 激光的形成及产生的基本条件1 粒子数反转分布 反转分布 E E1 E2 n1 n2 n3 E n 玻尔兹曼分布 E1 E2 n1 n2 n3 单位时间内STE增加的光子数密度单位时间内STA减少的光子数密度 光学谐振腔结构与稳定性 一 光腔的作用 1 光学正反馈 建立和维持自激振荡 提高简并度 决定因素 由两镜的反射率 几何形状及组合形式 2 控制光束特性 包括纵模数目 横模 损耗 输出功率等 二 光腔 开放式共轴球面光学谐振腔的构成 1 构成 在激活介质两端设置两面反射镜 全反 部分反 2 开放式 除二镜外其余部分开放 共轴 二镜共轴球面腔 二镜都是球面反射镜 球面镜 三 光腔按几何损耗 几何反射逸出 的分类 光腔 光腔中存在着伴轴模 它可在腔内多次传播而不逸出腔外 伴轴模在腔内经有限数往返必定由侧面逸出腔外 有很高的几何光学损耗 几何光学损耗介乎上二者之间 共轴球面谐振腔的稳定性条件 一 光腔稳定条件 1 描述光腔稳定性的g参量 定义 其中 L 腔长 二反射镜之间的距离 L 0 Ri 第i面的反射镜曲率半径 i 1 2 符号规则 凹面向着腔内时 凹镜 Ri 0 凸面向着腔内时 凸镜 Ri 0 对于平面镜 成像公式为 s 物距s 象距 f 透镜焦距 2 据稳定条件的数学形式 稳定腔 非稳腔 或临界腔 或g1g2 0 2 光腔的稳定条件 1 条件 使傍轴模 即近轴光线 在腔内往返无限多次不逸出腔外的条件 即近轴光线几何光学损耗为零 其数学表达式为 共轴球面谐振腔的稳定图及其分类 一 常见的几类光腔的构成 以下介绍常见光腔并学习用作图方法来表示各种谐振腔 一 稳定腔 1 双凹稳定腔 由两个凹面镜组成的共轴球面腔为双凹腔 这种腔的稳定条件有两种情况 即 0 g1 1 同理0 g2 1 所以 0 g1g2 1 其二为 R1 LR2 L且R1 R2 L 证明 R1 L 即g1 0 同理 g2 0 g1g2 0 又 L R1 R2 即g1g2 10 g1g2 1 如果R1 R2 则此双凹腔为对称双凹腔 上述的两种稳定条件可以合并成一个 即 R1 R2 R L 2 2 平凹稳定腔 由一个凹面反射镜和一个平面反射镜组成的谐振腔称为平凹腔 其稳定条件为 R L 3 凹凸稳定腔 由一个凹面反射镜和一个凸面反射镜组成的共轴球面腔为凹凸腔 它的稳定条件是 R1 0 R2 L 且R1 R2 L 或者 R2 L 可以证明 0 g1g2 1 方法同上 二 非稳腔 g1g2 1或g1g2 0 1 双凹非稳腔 由两个凹面镜组成的共轴球面腔为双凹非稳腔 这种腔的稳定条件有两种情况 其一为 R1L 此时 所以g1g2 0 其二为 R1 R2 L可以证明 g1g2 1 证明略 2 平凹非稳腔 稳定条件 R1 L R2 证明 g2 1 g1 0 g1g2 0 3 凹凸非稳腔 凹凸非稳腔的非稳定条件也有两种 其一是 R2 0 0 R1 L可以证明 g1g2 0 其二是 R2 0 R1 R2 L可以证明 g1g2 1 4 双凸非稳腔 由两个凸面反射镜组成的共轴球面腔称为双凸非稳腔 R1 0 R2 0 g1g2 1 5 平凸非稳腔 由一个凸面反射镜与平面反射镜组成的共轴球面腔称为平凸腔 平凸腔都满足g1g2 1 三 临界腔 g1g2 0 g1g2 1 临界腔属于一种极限情况 其稳定性视不同的腔而不同 在谐振理论研究和实际应用中 临界腔具有非常重要的意义 1 对称共焦腔 腔中心是两镜公共焦点且 R1 R2 R L 2FF 二镜焦距 g1 g2 0 g1g2 0 可以证明 在对称共焦腔内 任意傍轴光线可往返多次而不横向逸出 而且经两次往返后即可自行闭合 这称为对称共焦腔中的简并光束 整个稳定球面腔的模式理论都可以建立在共焦腔振荡理论的基础上 因此 对称共焦腔是最重要和最具有代表性的一种稳定腔 2 半共焦腔 由共焦腔的任一个凹面反射镜与放在公共焦点处的平面镜组成R 2Lg1 1 g2 1 2故g1g2 1 2 1 稳定腔 3 平行平面腔 由两个平面反射镜组成的共轴谐振腔R1 R2 g1 g2 1 g1g2 1 4 共心腔 两个球面反射镜的曲率中心重合的共轴球面腔 实共心腔 双凹腔g1 0 g2 0虚共心腔 凹凸腔g1 0 g2 0 都有R1 R2 Lg1g2 1 临界腔 光线既有简并的 也有非简并的 二 稳定图 稳定条件的图示 1 作用 用图直观地表示稳定条件 判断稳定状况 光腔的 2 分区 图上横轴坐标应为 纵轴坐标应为稳定区 由 二直线 g1 0 g2 0和 二支双曲线 g1g2 1线所围区域 不含边界 图上白色的非阴影区 临界区 边界线非稳区 其余部份 阴影区 图 2 2 共轴球面腔的稳定图 一球面腔 R1 R2 L 相应的 g1 g2 落在稳定区 则为稳定腔 一球面腔 R1 R2 L 相应的 g1 g2 落在临界区 边界线 则为临界腔 一球面腔 R1 R2 L 相应的 g1 g2 落在非稳区 阴影区 则为非稳腔 3 利用稳定条件可将球面腔分类如下 双凹稳定腔 由两个凹面镜组成 对应图中l 2 3和4区 平凹稳定腔 由一个平面镜和一个凹面镜组成 对应图中AC AD段 凹凸稳定腔 由一个凹面镜和一个凸面镜组成 对应图中5区和6区 共焦腔 R1 R2 L 因而 g1 0 g2 0 对应图中的坐标原点 半共焦腔 由一个平面镜和一个R 2L的凹面镜组成的腔 对应图中E和F点g1 1 g2 1 2 1 稳定腔 0 g1g2 1 2 临界腔 g1g2 0 g1g2 1 平行平面腔 对应图中的A点 只有与腔轴平行的光线才能在腔内往返g1 1 g2 1 共心腔 满足条件R1 R2 L 对应图中第一象限的g1g2 1的双曲线 半共心腔 由一个平面镜和一个凹面镜组成 对应图中C点和D点 g1 1 g2 0 3 非稳腔 g1g2 1或g1g2 0 对应图中阴影部分的光学谐振腔都是非稳腔 图 2 2 共轴球面腔的稳定图 1 平行平面腔2 半共焦腔3 半共心腔4 对称共焦腔5 对称共心腔 稳区图 稳定图的应用 一 制作一个腔长为L的对称稳定腔 反射镜曲率半径的取值范围如何确定 由于对称稳定腔有 R1 R2 R即 g1 g2 所以对称稳定腔的区域在稳定图的A B的连线上 图 2 2 共轴球面腔的稳定图 因此 反射镜曲率半径的取值范围 二 给定稳定腔的一块反射镜 要选配另一块反射镜的曲率半径 其取值范围如何确定 图 2 2 共轴球面腔的稳定图 例如 R1 2L则g1 0 5 在稳定图上找到C点 连接CD两点 线段CD就是另外一块反射镜曲率半径的取值范围 三 如果已有两块反射镜 曲率半径分别为R1 R2 欲用它们组成稳定腔 腔长范围如何确定 图 2 2 共轴球面腔的稳定图 令k R2 R1例k 2得直线方程 在稳定范围内做直线AE DF 在AE段可得0 L R1 同理 在DF段可得2R1 L 3R1 速率方程组与粒子数反转 三能级系统和四能级系统 一 二能级系统 光与粒子相互作用过程只涉及二个能级 1 能级图 约定 实线箭头代表辐射跃迁 虚线箭头代表非辐射跃迁 其中 W12 受激吸收几率 激励几率 W21 受激发射几率A21 自发发射几率 21 非辐射跃迁几率 热弛豫等 热弛豫即热运动碰撞交换能量 双下标代表过程的量 2 速率方程 二能级系统只有1个独立的速率方程 方程中的每一项 某一过程的几率与该过程始态能级上的粒子数之积 该过程导致的粒子数变化率 能级E2上粒子数密度的变化率为 第一项 受激吸收引起的n2的增加率 取正号 过程几率与过程始态上粒子数的乘积 第二项 受激发射引起的n2的减少率 取负号 第三项 自发发射引起的n2的减少率 取负号 第四项 非辐射跃迁引起的n2的减少率 取负号 若设g1 g2 则W12 W21 W 速率方程变为 3 稳定解 数学解 稳态下 故 可见 对二能级系统 一般总有 仅当激励速率很大时 4 结论 物理解 在光频区 二能级系统不可能实现粒子数反转 二 实现上下能级之间粒子数反转产生激光的物理过程 1 三能级系统图 其中E1 基态能级 又是激光下能级 也是抽运能级 E2 激光上能级 是亚稳能级 21小 E3 抽运能级 非辐射跃迁几率大 32大 其主要特征是激光的下能级为基态 极易积累粒子 几乎聚集了所有粒子 发光过程中下能级的粒子数一直保存有相当的数量 对抽运的要求很高 所以不易实现粒子数反转 由图可见 四能级系统要实现粒子数反转 只要求n2 n1而不必令n2 n0 而n0则是极易积累的基态粒子数 E0 基能级 光抽运能级 E1 不是基态能级 而是一个激发态能 是激光下能级 10小而 10大 迅速弛豫到E0 抽空E1 减少n1 在常温下基本上是空的 E2 激光上能级 亚稳能级 易积累n2 E3 光抽运能级 32小而 32大 迅速弛豫到E2 2 四能级系统图 3 激光下能级粒子数与基态粒子数的比较 实例 三价钕离子 1 图 2 5 为简化的四能级图 n0 n1 n2分别为基态 上能级 下能级的粒子数密度 n为单位体积内增益介质的总粒子数 R1 R2分别是激励能源将基态E0上的粒子抽运到E1 E2能级上的速率 2 速率方程 3个能级应有2个独立方程 1 E2能级在单位时间内增加的粒子数密度为 此处因为考虑到介质的线型函数远比传播着的光能量密度为的单色受激辐射光的线宽要宽得多 故应用 1 54 式和 1 55 式 因为E2能级向E1能级的自发跃迁几率A21远大于E2能级向基级能级E0的自发跃迁几率A20 所以这里没有考虑由A20引起的跃迁 速率方程组 2 E1能级在单位时间内增加的粒子数密度为 式中各项的物理过程及物理意义如同以上所述 总的粒子数为各能级粒子数之和 速率方程组 以上三式即为在增益介质中同时存在抽运 吸收 自发辐射和受激辐射时各能级上的粒子数密度随时间变化的速率方程组 稳态工作时的粒子数密度反转分布 一 当激光器工作达到稳定时 抽运和跃迁达到动态平衡 各能级上粒子数密度并不随时间而改变 即 假设能级E2 E1的简并度相等 即g1 g2 因此有B12 B21 则有 将上两式相加可得 由上几式可得 则激光上下能级粒子数密度反转分布的表达式为 式中 1 2分别为上 下能级的寿命 小信号工作时的粒子数密度反转分布 由式可得 一 小信号粒子数密度反转分布 参数对应着激光谐振腔尚未发出激光时的状态 入射光不含 通常把这个状态叫作小信号工作状态 而参数就被称作是小信号工作时的粒子数密度反转分布 n0称作小信号反转粒子数密度 它正比于受激辐射上能级寿命 2及激发几率R2 二 小信号粒子数反转的物理条件 1 激光上能级E2的寿命要长 使该能级上的粒子不能轻易地通过非受激辐射而离开 2 激光下能级E1的寿命要短 使该能级上的粒子很快地衰减 3 选择合适的激励能源 使它对介质的E2能级的抽运速率R2愈大愈好 而E1能级的抽运速率R1愈小愈好 即满足条件 均匀增宽型介质的粒子数密度反转分布 由式可知激光工作物质的光谱线型函数对激光器的工作有很大的影响 具有均匀加宽谱线和具有非均匀加宽谱线的工作物质的反转密度行为有很大差别 由它们所构成的激光器的工作特性也有很大不同 因此将分别予以讨论 一 对于均匀增宽的介质 如果介质中传播的光波频率为 则有 如果介质中传播的光波频率 则有 则有 一般情况下的粒子数密度反转分布可以表示为 这就是均匀增宽型介质E2 E1能级之间粒子数反转分布的表达式 它给出能级间粒子数反转分布值与腔内光强 光波的中心频率 介质的饱和光强 激励能源的抽运速率以及介质能级的寿命等参量的关系 2 10 均匀增宽情形 只要入射光频率在谱线线宽范围内 所有粒子都参加受激发射 吸收 均匀增宽型介质粒子数密度反转分布的饱和效应 本节研究 反转粒子数密度 n的饱和效应 讨论 n与各种因素的关系 引出 n饱和效应的概念 一 粒子数反转分布 n饱和效应 介质已实现粒子数反转并达到阈值 入射光中含频率时 强烈的受激发射使激光上能级的粒子数迅速减少 随入射光强I增大反而下降的现象 由式可知 饱和原因 入射光引起强烈的受激发射使激光上能级粒子数减少 二 n与入射光频率v的关系 讨论 时 入射光频率等于谱线中心频率 可见 I一定时 对不同入射光频率v n不同 只要 必有有饱和效应 若 饱和效应显著 这是由于中心频率处受激辐射几率最大 所以入射光造成的反转粒子数下降越严重 时 入射光频率偏离谱线中心频率时 可见 只要 则 仍有饱和效应 时 结论 不论v是否偏离v0均有饱和效应 偏离v0越远 饱和作用越弱 3 为了更具体地说明频率对 n的影响 令腔中光强都等于Is 根据上式算出几个频率下的 n值 如下表所示 随着频率对中心频率的偏离 光波对粒子数密度反转分布值的影响逐渐减小 确定对介质有影响的光波的频率范围 通常采用与线型函数的线宽同样的定义方法 频率为 0 强度为Is的光波使 n0减少了 n0 2 这里把使 n0减少 n0 2 2的光波频率 与 0之间的间隔 定义为能使介质产生饱和作用的频率范围 通常认为频率在此范围内的人射光才会引起显著的饱和作用 三 饱和光强 饱和参量 Is的物理意义 衡量饱和的程度 时 和I无关 饱和可忽略 时 随I增大而下降 显著饱和 由介质性质决定 从手册查出 Is的数值取决于增益介质的性质 它可以由实验测定 或由经验公式确定 氦氖激光器 Is 0 1W mm2 0 3W mm2 二氧化碳激光器 Is W mm2 d 放电管的直径 单位为mm 本节导出激光工作物质的增益系数表示式 分析影响增益系数的各种因素 着重讨论光强增加时增益的饱和行为 具有均匀加宽谱线和具有非均匀加宽谱线的工作物质的增益饱和行为有很大差别 由它们所构成的激光器的工作特性也有很大不同 因此将分别予以讨论 均匀增宽介质的增益系数和增益饱和 饱和效应 随着I的增大 G和 n不增反降的现象 饱和原因 入射光引起强烈的受激发射使激光上能级粒子数减少 一标志介质受激放大能力的物理量 增益系数G 可以表示为 I很小时 和均为常数 时 和均随I增大而下降 对于均匀增宽介质 均匀增宽介质的增益系数 图2 7均匀增宽介质小信号增益系数 可见 与光强无关 仅是频率的函数 小信号I Is增益系数 图 2 7 示意与谱线的线型函数有相似的变化规律 该曲线称为小信号增益曲线 其形状完全取决于线型函数 综合上两式可得 二 均匀增宽介质增益系数G的表达式 均匀增宽介质的增益饱和 一 增益饱和 在抽运速率一定的条件下 当入射光的光强很弱时 增益系数是一个常数 当入射光的光强增大到一定程度后 增益系数随光强的增大而减小 二 对增益饱和分几种情况讨论 1 v v0及I Is时 入射光强很小 且入射光频率与谱线中心频率重合时 小信号中心频率增益系数 则中心频率处小信号增益系数 可见 无饱和 和I无关 且有最大值 中心频率小信号增益系数决定于工作物质特性及激发速率 f v0 可由实验测出 2 但时 中心频率入射光光强I与饱和光强可比拟时 非小信号中心频率增益系数 介质对此光波的增益系数 为 可见 显著饱和 即时明显随I增大而下降 上式常用来估算均匀加宽谱线饱和后的增益系数 因能起振的纵模频率总是在附近 图 2 8 均匀增宽型增益饱和曲线 例如 时 即降至小信号时的一半 3介质对频率为 光强为的光波的增益系数 此时均匀介质对光波的增益系数为 可见 只要 则不论v为何值均有饱和 且有 根据上式列表如下 令表中各种频率光波的光强都等于饱和光强Is 并作的曲线如图 2 8 所示 根据上式列表如下 令表中各种频率光波的光强都等于饱和光强Is 并作的曲线如图 2 8 所示 图 2 8 均匀增宽型增益饱和曲线 介质对频率为光波的增益系数值最大 该光波的增益饱和作用也最大 当 介质对光波的增益作用以及光波对介质的增益饱和作用都很微弱 讨论 谱线中心频率是和的对称轴 在处它们有最大值 越大 和越小 2 时 无饱和 和I无关 时 有饱和 随I增大而下降 3 I不同时增益曲线及其宽度 半幅全宽 a 小信号增益系数的宽度为 b 增益系数的宽度为 原因 v偏离v0越大 饱和效应越弱 曲线下降越缓慢 3 对均匀增宽工作物质 入射光所引起的饱和效应使增益曲线整体下降 但在处 增益饱和最显著 偏离中心频率越远 饱和越弱 增益下降越小 因此使增益曲线下降趋于平缓 原因 在均匀加宽谱线的情况下 由于每个粒子对谱线不同的频率处都有贡献 所以当某一频率的受激辐射消耗了激发态的粒子时 也就减少了对其它频率信号的增益起作用的粒子数 其结果是增益曲线在整个谱线上均匀的下降 以上我们讨论了当频率为v 强度为Iv光入射时 它本身所能获得的增益系数G 随I 增加而下降的规律 现在我们提出另外一个问题 设有一频率为v 强度变为I 的强光入射 同时还有一频率为vi的弱光i入射 此弱光的增益系数G vi 将如何变化 4频率为 光强为I的强光作用下增益介质对另一小信号i 弱光 的增益系数G vi 将如何变化 对均匀加宽工作物质而言 显然 强光入射会引起反转粒子数密度 n的下降 而 n的下降又将导致弱光增益系数的下降 由于I和i放大是消耗同一个E2能级上的粒子 而介质中E2能级上的粒子数密度已经在I的激励下大为减少 所以 此时介质对光波的增益系数也同样下降 频率为v的强光I不仅使本身频率处介质的增益系数由下降至 而且使介质的线宽范围内一切频率处介质的增益系数都下降了同样的倍数 变为 由于光强I仅改变粒子在上下能级间的分布值 并不改变介质的密度 粒子的运动状态以及能级的宽度 因此 在光强I的作用下 介质的光谱线型不会改变 线宽不会改变 增益系数随频率的分布也不会改变 光强仅仅使增益系数在整个线宽范围内下降同样的倍数 如图 2 9 所示 增益均匀饱和而不形成烧孔 也就是说 在均匀加宽谱线情况下 由于每个粒子对谱线不同频率处的增益都有贡献 所以当某一频率 v 的受激辐射消耗了激发态的粒子时 也就减少了对其他频率 vi 信号的增益起作用的粒子数 其结果是增益在整个谱线上均匀地下降 于是在均匀加宽激光器中 当一个模振荡后 就会使其他模的增益降低 因而阻止了其他模的振荡 非均匀增宽介质的增益饱和 光源中发光粒子由于某种物理因数的影响 使得中心频率发生变化 不同的发光粒子因所处物理环境不同 造成中心频率 表观中心频率 也不同 这就使由各发光粒子光谱线叠加而成的光源光谱线加宽 光源光谱线的线型函数取决于各发光粒子中心频率的分布 它不再与单个发光粒子的光谱线线型函数相同 这种加宽称为非均匀增宽 它的特点是 不同发光粒子只对光源光谱线的相应部分有贡献 回顾非均匀增宽 非均匀增宽情形 只有谱线中心频率与入射光表观中心频率相应的粒子才参予受激发射 吸收 对线型函数为fD 的非均匀多普勒加宽工作物质 在计算增益系数时 必须将反转粒子数密度 n按表观中心频率分类 介质在小信号时的粒子数反转分布值 一 在系统到达动平衡时 对非均匀增宽介质仍有 2 7 2 8 二 由于介质内的粒子在作紊乱的热运动 粒子运动的速度沿腔轴方向的分量满足麦克斯韦速度分布律 小信号情况下 E2能级上的粒子中速度在之间的粒子数密度为 E1能级上的粒子中速度在之间的粒子数密度为 若E2 E1能级的简并度相等 速度在间的粒子数密度反转分布值为 在E2 E1能级间各种速度的粒子数密度反转分布值之和为 三 在非均匀增宽型介质中 单位速度间隔内粒子数密度反转分布值随速度的分布情况如图 2 10 所示 图 2 10 曲线 四 在E1 E2能级间跃迁的粒子辐射的光波也是中心频率为的自然增宽型函数 但由于多普勒效应 在正对着粒子运动 运动速度为 的方向上接受到的光波的线型函数变为中心频率为的自然增宽型函数了 和的关系为 介质中能够辐射中心频率为光波的粒子数密度反转分布值为 频率v附近单位频率间隔内的光强占总光强的百分比 能够辐射以为中心频率的单位频率间隔内的粒子数密度反转分布值为 因为在非均匀增宽工作物质中 每一种特定类型的粒子 只能同某一定频率v的光相互作用 因此反转粒子数密度 n0按频率v有一个分布 是非均匀增宽介质的线型函数在处的大小 的中心频率也是 但的线宽却远大于均匀增宽谱线的线宽 非均匀增宽介质在小信号时的增益系数 一 增益系数的计算 方法 把一条非均匀增宽谱线看作大量线宽极窄的均匀增宽谱线的叠加 计算时 先把按中心频率分类 然后再叠加 1 频率为粒子数密度反转分布对小讯号增益系数的贡献 就象均匀增宽型介质的对的贡献那样 2 介质的小讯号增益系数是介质中各种速度的粒子数密度反转分布的贡献之和 故有 虽然积分是在0 区内进行的 但是由于是的中心频率 当时的的值迅速趋近于零 实际上的取值范围为 实际是由频率在范围内的粒子数密度反转分布值贡献的 在此范围内 二 中心频率处的小讯号增益系数 非均匀增宽介质稳态粒子数密度反转分布 一 当频率为 光强为I的光波在其中传播时 对中心频率为的粒子来说 由 2 10 式 二 当频率为 光强为I的光波在其中传播时 对中心频率为附近单位频率间隔内粒子数反转分布值的饱和效应规律为 三 图 2 12 描绘了光波对频率为的粒子数密度反转分布的饱和作用以及起作用的频率范围 曲线1 I较小 小信号情形 曲线2 I较大 大信号情形 四 反转粒子数烧孔效应 原因 非均匀增宽物质中特定类型粒子只与特定频率v的入射光有相互作用 频率v1的准单色入射光入射时 当入射光频率为v1时 对谱线中心频率为的粒子刚好是A点的中心频率 因此 在光强为I的光波作用下下降到点 当入射光频率为v1时 对谱线中心频率为的粒子 由于入射光频率v1偏离中心频率vb 所以引起的饱和效应较小 它仅下降到点 A A1 B B1 当入射光频率为v1时 对谱线中心频率为的粒子 由于入射光频率v1偏离中心频率vc已大于 所以引起的饱和效应可以忽略 频率为强度为I的光波仅使围绕中心频率 宽度为范围内的粒子有饱和作用 因此在曲线上形成一个以为中心的凹陷 习惯上把它叫做烧孔效应 孔的深度为 孔的宽度为 孔的面积为 A A1 B B1 C C 反转粒子数密度曲线烧孔的孔宽和孔深随饱和信号光强的增大而变宽 变深 留意 烧孔面积 常用来估算输出激光功率 例如对四能级系统 受激发射光子数 故输出激光功率 非均匀增宽介质稳态情况下的增益饱和 图 2 13 非均匀增宽型增益饱和曲线 1 在非均匀增宽型介质中 频率为 强度为I的光波只在附近宽度约为的范围内有增益饱和作用 如图 2 13 所示 2 增益系数在处下降的现象称为增益系数的 烧孔 效应 孔的中心频率仍是光频 孔宽仍为 只是孔的深度浅了一点 3 在频率为 强度为I的光波作用下 可以计算出介质的增益系数 4 从上面的分析可以看出 光波I使非均匀增宽型介质发生增益饱和的速率要比均匀增宽型介质缓慢 5 从上面的分析可以看出 光波I使均匀增宽型介质对各种频率的光波的增益系数都下降同样的倍数 而对非均匀增宽型介质它只能引起某个范围内的光波的增益系数下降 并且下降的倍数不同 图 2 13 非均匀增宽型增益饱和曲线 图 2 14 非均匀增宽型激光器中的增益饱和 6 对于多普勒增宽来讲 光波I使频率为 即速度为 附近的粒子数密度反转分布饱和 同样沿负轴传播的光波I也会使速度为 其对应的频率为 的粒子数密度反转分布饱和 即沿腔轴负方向传播的频率为的光波将在增益曲线上的附近烧一个孔 如图 2 14 所示 增益曲线烧孔的孔宽和孔深随饱和信号光强的增大而变宽 变深 激光器的损耗与阈值条件 我们在前面已经指出 如果谐振腔内工作物质的某对能级处于粒子数反转状态 则频率处在它的谱线宽度内的微弱光信号会因增益而不断增强 另一方面 谐振腔中存在的各种损耗 又使光信号不断衰减 能否产生振荡 取决于增益与损耗的大小 对光学谐振腔 要获得光自激振荡 须令光在腔内来回一次所获增益 至少可补偿传播中的损耗 激光器的损耗 一 内部损耗 增益介质内部由于成分不均匀 粒子数密度不均匀或有缺陷而使光产生折射 散射等使部分光波偏离原来的传播方向 造成光能量的损耗 内部损耗系数 具有L 1 长度 量纲 二 镜面损耗 当强度为I的光波射到镜面上 其中r1I 或r2I 反射回腔内继续放大 其它的部分均为损耗 包括t1I 或t2I 镜面的散射 吸收以及由于光的衍射使光束扩散到反射镜范围以外造成的损耗 用a1I 或a2I 表示 r1r2 M1M2的反射率 t1t2 M1M2的透射率 激光器内形成稳定光强的过程 激光谐振腔内光强由弱变强直至最后达到稳定的过程可以用图 2 15 来描写 M2是反射率的全反射镜 置于在处 M1是反射率的部分反射镜 置于坐标处 稳定光强在腔中传播过程由闭合曲线所表示 一 谐振腔内光强的放大过程 1 由于自发辐射 在z 0处有一束强度为I1的入射光沿腔轴传播 此时由于腔内光强很弱 此时介质的增益系数就是小讯号增益系数 有 图中曲线表示了这个过程 又经增益介质进行放大 再传到M1处时 光强已增至 如图中曲线所示 3 光强在M1上一部分反射回腔内继续放大 这部分为 一部分作为激光器的输出由M1镜透射出去 其大小为 其余部分都作为镜面损耗而损失掉了 这部分为 4 图中纵轴上代表总镜面损耗 即 5 此时腔内光的放大倍数为 二 谐振腔稳定出光过程 随着光强的增大 增益系数进一步减小 由增益而增加的光能量仅能补偿损耗而无剩余 输出光强也不再改变 此时 由知 阈值条件 一 获得激光所要求的双程放大倍数为 将上式改写为 令 则形成激光所要求的增益系数的条件为 二 随着光强的增大 增益系数不断下降 当它下降到下限值时光强也到达最大值IM 增益系数的下限值为增益系数的阈值 即为 三 粒子数密度反转分布值的阈值为 激励能源对介质粒子的抽运一定要满足 才能产生激光 对介质能级选取的讨论 一 如果激光下能级E1是基态或很接近基态的能级 则根据波尔兹曼分布可知E1能级上粒子数密度很大 这样完全要靠激励能源将下能级中一半以上的粒子不停地抽运到高能级E2上 且要满足 二 如果下能级不是基态 并在常温下它就是一个空态 此时激励能源只要抽运的粒子到高能级E2上即可 这对激励能源的功率要求较低 这就是常说的三能级系统和四能级系统 三 以三种固体激光器为例 分别算出 以及 并进行比较 见表2 2 表2 2三种激光器的有关参数 三能级系统达到阈值时上能级应该具有的粒子数几乎是的10陪 而四能级系统达到阈值时 只要求上能级的粒子数密度稍大于即可 4 6 激光器的应用 全 半反镜片 作用 1 提供正反馈2 选模全反镜反射率一般大于99 5 半反镜反射率40 98 Q开关 声光Q开关工作原理 声光Q开关是利用声光相互作用以控制光腔损耗的Q开关技术 声光调Q是通过电声转换形成超声波使调制介质折射率发生周期性变化 对入射光起衍射作用 使之发生衍射损耗 Q值下降 激光振荡不能形成 在光泵激励下其上能级反转粒子数不断积累并达到饱和值 之后突然撤除超声场 衍射效应立即消失 腔内Q值猛增 激光振荡迅速恢复 其能量以巨脉冲形式输出 我们可以把Q驱比喻为拦河坝的大闸 Q驱有高频信号提供给Q头的时候 相当于闸门放下 无水流通过 存储水量 水位上升 即锁光 当Q驱撤消高频信号的时候 即闸门打开 存储的大量能量释放 存储的能量在短时间内释放 产生的能量级是调Q前的千倍甚至万倍以上 重复锁光 释放这个过程 使我们能得到激光器连续输出的巨能量脉冲 而重复这个过程的周期足够短 使我们直观得到调Q后的激光是不间断的 按工作物质的性质分类气体激光器CO2 He Ne液体激光器液体染料固体激光器Nd YAG Nd YVO4 Yb YLP按工作方式区分可分为连续型和脉冲型等 激光打标机常用激光器 YAG灯泵浦固体激光器氪灯Nd YAG侧面泵浦固体激光器LDNd YAG端面泵浦固体激光器LDNd YAGNd YVO4光纤激光器LDYb YLPCO2激光器 YAG灯泵浦固体激光器 侧面泵浦激光器 侧面泵浦和端面泵浦的区别 主要是泵浦方向的差别 光纤激光器 CO2激光器是远红外光频段波长为10 6 m的气体激光器 采用CO2气体充入放电管作为产生激光的介质 当在电极上加高电压 放电管中产生辉光放电 稀薄气体中的自激导电现象 就可使气体分子释放出激光 将激光能量放大后就形成对材料加工的激光束 CO2激光器 Nd YAG Nd YVO4 泵浦源内部 泵浦头 加长分离镀金腔 QS27 4S B XXn QS Q Switch缩写27 声光驱动射频频率MHz4 通光孔径1 623456 58mmS 超声波模式C偏振S非偏振D正交B 水接头形式SBRXXn 厂家特殊定义的符合AT1公制螺纹未指名英制螺纹
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!